

Mastering Python
A Comprehensive Approach for
Beginners and Beyond

Copyright © 2025 Ouereila Publishing House

All Rights Reserved
This book, Mastering Python, is protected under international copyright
laws. No part of this publication may be copied, reproduced, stored in a
retrieval system, or transmitted in any form—electronic, mechanical,
digital, photocopying, recording, or otherwise—without the prior written
consent of the author or Ouereila Publishing House.
Unauthorized reproduction, distribution, or sharing of this material, whether
in print or digital format, is strictly prohibited and constitutes a violation of
copyright law. Legal action may be taken against individuals or entities
who engage in such activities.
This book is provided for personal and educational use only. Any
commercial use, resale, or modification of its content without permission is
forbidden.
For permissions, inquiries, or licensing requests, please contact:

Ouereila Publishing House
Email: ouereila@gmail.com
Forms: ouereila?

mailto:ouereila@gmail.com
https://forms.gle/oCEzyKpXgf1zbiV46

Ouereila Publishing

House
Mastering Python
2025

Author: Williams Asiedu

MASTERING PYTHON

A Comprehensive Approach for Beginners and Beyond

Copyright © 2025 Williams Asiedu

Licensed under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributes on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Brief Contents

 Preface

CHAPTER
1

Introduction to Programming………………………………………..

CHAPTER
2

Starting Python……………………………………………………………...

CHAPTER
3

Variable………………………………………………………………………….

CHAPTER
4

Reserved Words ……………………………………………………………

CHAPTER
5

Operators………………………………………………………………………

CHAPTER
6

Data Types……………………………………………………………………

CHAPTER
7

Decision Making Statements………………………………………….

CHAPTER
8

Loops……………………………………………………………………………..

CHAPTER
9

Function…………………………………………………………………………

CHAPTER
10

Class and Object…………………………………………………………….

CHAPTER
11

Random, Calendar and Datetime Module …………………….

CHAPTER
12

OS and SYS Module ………………………………………………………

CHAPTER
13

Pathlib and Glob ……………………………………………………………

CHAPTER
14

Handling Errors and Exceptions ……………………………………

CHAPTER
15

File Handling and Byte Operations………………………………..

CHAPTER
16

HTTP Requests ……………………………………………………………

CHAPTER
17

JSON and Pickle …………………………………………………………….

CHAPTER
18

SQLite3 ………………………………………………………………………….

CHAPTER
19

Text-to-Speech ……………………………………………………………..

CHAPTER
20

QR Code ……………………………………………………………………….

CHAPTER
21

Yagmail – Python Email …………………………………………………

CHAPTER
22

Faker – Generating Fake Data..………………………………………

CHAPTER
23

Emoji …………………………………………………………………………….

CHAPTER
24

Simple HTTP Server ………………………………………………………

CHAPTER
25

Turtle ……………………………………………………………………………

CHAPTER
26

Pillow (PIL) …………………………………………………………………….

 Back Matter …………………………………………………………………..

Table of Contents

Preface
Who is this book for
Structure of the book

ix
ix
x

CHAPTER 6
Data Types
Numbers
The math Module
String
String Indexing
Concatenating string
Slicing a string
String Methods
String Formatting
Escape Characters
List
Slicing a list
List Methods
Using iter() and __iter__() to
iterate
Tuple
Accessing Elements from a
Tuple
Dictionary
Dictionary Methods
Updating Dictionary Items
Set
Set Methods

42
44
45
49
49
50
50
51
59
62
64
65
66
71
73
73
77
78
79
82
83

CHAPTER 1
Introduction to Programming
Programming Languages
Kinds of Programming
languages

1
1
2

CHAPTER 2
Starting Python
Installing Python
Editors
Running Python
Modules or Libraries

4
5
9
11
16

CHAPTER 3
Variable
Kinds of variables
Local and global variables
Comment

19
21
21
24

CHAPTER 4
Reserved Words

26 CHAPTER 7

Reserved Built-in Functions
ASCII Characters

27
29

Decision Making Statements
if Statement
if-else Statement
if-elif Statement
Nested Conditional Statements

90
90
92
93
95

CHAPTER 5
Operators
Arithmetic Operators
Relational Operators
Assignment Operators
Logical Operators
Identity Operators
Membership Operators

32
33
35
37
39
41
41

CHAPTER 8
Loops
The for loop
Range
The while loop
The break Statement
The continue Statement
Data Generation

98
100
101
103
105
106
107

CHAPTER 9
Function
Built-in Functions
User-defined Functions
Calling Functions
Argument Functions
Unlimited Arguments
Understaning the pass
Keyword
The Lambda Functions
Using map() and filter()
Multiprocessing
Threading

110
112
112
114
115
118
119
120
121
123
124

CHAPTER 13
Pathlib and Glob
Pathlib Class
Path Representation and
Properties
File and Directory Operations
File and Directory Status
File and Directory Searching
Glob.glob
File reading and writing
Path Modification and
Construction
File Metadata and Permissions

172
173
173
175
176
177
178
180
181
183

CHAPTER 10
Class and Object
Creating Object
Accessing Methods and
Attributes
The __init__ Method
Argument class
Running a Class
Creating Modules (Library)

129
131
131
134
136
138
139

CHAPTER 14
Handling Errors and
Exceptions
Errors in Python Programming
Syntax Errors
Runtime Exception
Handling Errors and
Exceptions
try-except
try-finally

184
186
186
188
189
190
192

CHAPTER 11
Random, Calendar and
Datetime
The Guess Game
Calendar Module
Datetime Module

142
147
148
152

CHAPTER 15
File Handling and Byte
Operations
Opening Files
File Opening Modes
Using pathlib.Path.open()
Reading and Writing Files
Reading Binary Files
Writing Binary Files
Appending Data to Files
Accessing File Attributes

194
196
197
198
198
201
202
205
206

CHAPTER 12
The OS and SYS Module
File and Directory
Management
Process Management
System Information

157
158
161
162
163 CHAPTER 16

Path and Directory Navigation
Permissions and Security
The SYS Module
SYS Methods
The sys.argv
Python Runtime Configuration
Memory and Perfomance
Input/Output Handling

164
166
166
167
168
169
170

HTTP Requests
Common Request Methods
GET() Requests
Downloading a File
POST()
Uploading a File
PUT()
PATCH()
DELETE()

207
208
209
211
212
213
214
214
215

CHAPTER 17
JSON and Pickle
Common JSON Methods
Encoding(Serialization)
Decoding(Deserialization)
Common Pickle Methods
Writing to a Pickle
File(Serializing)
Reading from a Pickle File

216
218
218
221
224
225
226

CHAPTER 21
Yagmail – Python Email
Yagmail Methods
Sending Messages
Sending Email with
Attachments
Sending Email with HTML
Contents

265
267
268
271
272

CHAPTER 22
Faker – Generating Fake Data
Faker Methods
Faker Data
Generating Fake emails
Generating Fake Addresses
Generating Fake Identity

273
275
275
277
278
278

CHAPTER 18
SQLite3
SQLite3 Methods
Creating and Connecting to
Database
Creating a Cursor
Querying
Creating Tables

229
231
232
233
234
234
236

Atering Tables
Adding Records
Updating Records
Deleting Records
Fetching Data
The SQL Data Fetching
Commands

238
239
240
241
242

CHAPTER 23
Emoji
Why the Need for Emojis in
Programs
Emoji Methods
Using emoji.emojize()
Emoji names and their Unicode
Converting Emojis to Unicode

279
280
281
282
284
286

CHAPTER 19
Text-to-Speech
Text-to-Speech Methods
Getting Voice Properties
Getting Volume Properties
Getting Rate Properties
Setting Voice, Volume and
Rate
Saving Speech to Audio File

250
252
254
255
256
256
257

CHAPTER 24
Simple HTTP Server
Why Use HTTP Server
Converting Computer into
Server
Accessing the Server

287
288
289
290

CHAPTER 25
Turtle
Basic Turtle Operations
Movement and Positioning
Pen Control
Appearance and Shape Control
Drawing Shapes
Screen and Window Control

292
295
296
301
304
306
310

379
379

CHAPTER 20
QR Code
QR Code Methods

259
261

315
317
318

CHAPTER 26
Pillow
Features and Functionalities

BACK MATTER
Remarks

Image File Formats
The PIL Modules
The Image Module
Saving Images and File
Conversion
Creating GIFs or Animated
Images
Color Conversion and Filters
Geometric Transformations
Image Attributes
The ImageDraw Module
Drawing Shapes
The ImageEnhance Module
Brightness()
Contrast()
Color()
Sharpness()
The ImageFilter Module
ImageFilter Classes
The ImageChops Module
The ImageGrab Module
Taking Screenshots
Capturing Clipboard Content

319
321
325
326
327
333
339
342
346
354
355
356
358
359
361
364
367
376
376
377

Acknowledgement
About Author

380

Preface

Programming has rapidly evolved into a fundamental part of modern
computing culture. Whether driven by passion or profession, individuals
across the globe are embracing the art of designing, creating, and developing
through code. The number of programmers has grown exponentially,
especially as programming languages become more accessible and easier to
learn.

From the early days of foundational languages like Assembly, COBOL,
Fortran, BASIC, and Pascal—often referred to as the pioneers of
programming—we've arrived at a new era where modern languages like
Python dominate the landscape. Python, in particular, is celebrated for its
simplicity, clean syntax, and beginner-friendly nature. It is an object-oriented
language with a massive global community, rich library support, and
unmatched versatility.

Python's real-world applications are vast. It powers critical innovations in
fields such as:

Artificial Intelligence (AI)
Machine Learning (ML)
Web Development
Mobile and Desktop App Development
Data Science and Analytics
Automation and Scripting
Game Development
Image and Video Processing
Graphic Design and Animation
Internet of Things (IoT)
Robotics
Cybersecurity
... and more.

Who Is This Book For?

This book is designed for aspiring programmers and computer enthusiasts
who are eager to learn Python from scratch and apply it across a variety of
domains. Whether you aim to become a mobile or web developer, a data
analyst, a game designer, or explore AI and machine learning, this book will
serve as your springboard.

If you are:

A beginner with no prior coding experience

A student starting a computer science or IT program

A tech-savvy professional exploring new skills

A hobbyist interested in creating your own applications

An experienced developer seeking to strengthen Python
foundations

…then this book is for you.

It’s written in a friendly, conversational tone with plenty of hands-on
examples and exercises. You'll learn the core concepts of Python
programming through clear explanations and real-world applications, all
while building the confidence to take on more advanced topics.

Structure of the Book

This book is written in simple, clear English for easy comprehension. Each
concept is explained with relatable examples and practical exercises, allowing
readers to try their hands on real Python code—whether or not they are

currently working on a computer.

Key Features

1. Code Snippets
Each chapter contains thoroughly tested code samples. These snippets serve
as mini-simulations of real-world programming, making it easier for readers
to understand and visualize how code works—even without access to a
computer or development environment.

2. Notes
Scattered throughout the chapters are helpful notes that highlight key facts,
tips, and best practices. These notes are designed to strengthen your mastery
of essential Python concepts and make them memorable.

3. Deep Dives
This feature encourages readers to go beyond the basics. "Deep" sections
provide additional insights, techniques, or extended examples that help
deepen understanding and encourage independent exploration.

4. Think About It
These are thought-provoking questions posed at the end of certain sections.
They challenge the reader to reflect on what they’ve learned, apply the
concepts logically, and think critically—strengthening both retention and
problem-solving skills.

Chapter Overview

Every chapter begins with a clear overview, introducing the topics to be
covered. This prepares readers for what to expect and sets clear learning

objectives, so they know what they will gain by the end of the chapter.

Chapters

The book is divided into 26 chapters, each focusing on a distinct topic in
Python programming. Some chapters build directly upon previous ones,
allowing for a progressive, cumulative learning experience. Foundational
chapters lay the groundwork, while later ones explore more advanced and
applied topics.

From basic syntax and variables to file handling, OOP, web automation,
APIs, and data visualization—this book guides readers through a structured
journey to Python mastery.

Book Matter

The final section of the book is the Book Matter, which includes the
Author’s Remarks, Acknowledgements, and Author’s Bio. Here, the
author expresses gratitude to individuals who contributed to the creation of
the book in any capacity and shares a brief professional background.

Introduction

Understanding the underlying mechanisms of computers and modes of
communication has underscored the necessity for efficient programming.
Today, programming permeates our daily lives, accessible to all without the
need for formal certification. It has become an integral aspect of digital
market dynamics, with software proliferation driving industry growth.

Programming languages serve as the cornerstone of software development,
representing the gateway to becoming a programmer or app developer. Over
the years, these languages have evolved significantly, transitioning from
complex structures to user-friendly interfaces. This century's programming
languages are notably more intuitive, facilitating easier comprehension and
application in development processes.

Credit is due to the inventors of modern programming languages for their
tireless efforts and contributions to software development. Their innovations
have not only democratized programming but also empowered individuals
from diverse backgrounds to participate in the digital economy.

Programming Languages
Just as the name implies, language serves as a means of communication
between two parties. Similarly, programming languages facilitate
communication between users and computers through the use of symbols and
objects, known as mnemonics. Since the inception of computers,
programmers have continuously introduced new languages into the fold, each
building upon or slightly altering the structure or syntax of its predecessors.

Programming languages are distinguished by their unique syntax, semantics,

and intended applications. These languages range from low-level assembly
languages, which directly interact with hardware, to high-level languages like
Python and Java, which prioritize readability and ease of use. Despite their
diversity, all programming languages share the common goal of enabling
humans to instruct computers to perform specific tasks efficiently and
accurately.

How the Programming Languages work
The fundamental language of computers is binary code, consisting of
sequences of ones (1) and zeroes (0). For example, the binary code 101 is
interpreted by the computer as the digit 5. Known as machine language, this
binary code is the sole language that computers inherently understand.
However, communicating with computers through binary code directly is
arduous and impractical for users.

To bridge this gap, programming languages are utilized to facilitate
communication between users and computers. These languages are designed
to be more human-

readable and intuitive, allowing users to express instructions in a familiar
syntax. When a user writes code in a high-level programming language, a
special software called a compiler or interpreter translates this code into
machine language that the computer can execute.

In essence, programming languages act as an intermediary, enabling users to
convey instructions to computers in a more accessible manner, while
compilers and interpreters serve as translators, converting these instructions
into the binary code that computers comprehend. This process streamlines the

programming workflow, making it feasible for individuals to develop
software and interact with computers effectively.

Kinds of Programming Languages

Low-Level Programming Languages:
Also known as machine language, low-level languages directly interact with
hardware and consist of binary code represented by 0s and 1s. They are the
most basic form of programming languages and are specific to the
architecture of the computer's processor.

High-Level Programming Languages:
High-level languages are designed to be more user-friendly and abstracted
from hardware specifics. They use natural language elements, symbols, and
objects to make programming easier and more intuitive for humans. These
languages are then compiled or interpreted into machine code.

Language Year Origin Inventor

Fortran 1950 - IBM

Cobol 1960 - Grace Hopper

Lisp 1958 - John McCarthy

Pascal 1970 - Niklaus Wirth

C 1970 BCPL Denis Ritchie

C++ 1980 C Bjarne Stroustrup

Perl 1987 C Larry Wall

Python 1991 C, ABC Guido Van Rossum

Java 1991 C James Goslin (Oracle)

JavaScript 1995 ECMAScript Netscape

C# 2000 Java, C++,
Delphi

Anders Hejisberg

Kotlin 2011 Java JetBrains

Dart 2011 C++ Google
Table 1.0: High-Level Programming Languages

Python

Python is a versatile and powerful programming language renowned for its
readability, simplicity, and broad applicability across various domains.
Developed by Guido Van Rossum in the late 1980s at the National Research
Institute in the Netherlands, Python officially debuted in 1991. Since then, it
has gained widespread adoption and popularity, becoming one of the most
widely used programming languages globally.

Python's distinguishing features include being high-level, object-oriented,
interactive, interpreted, and general-purpose. Its flexibility makes it suitable
for a wide range of applications, including app development, data science,
robotics, artificial intelligence, machine learning, web development, and
game development.

One of Python's key strengths lies in its readability and simplicity. Python
code is designed to resemble plain English, with keywords and syntax that
are easy to understand and remember. This high-level scripting language
allows developers to write concise and elegant code, facilitating rapid
development and prototyping.

Moreover, Python boasts a vibrant and supportive community of developers
and enthusiasts. This extensive community support ensures a wealth of
resources, libraries, and frameworks readily available for developers to
leverage in their projects, further enhancing Python's appeal and utility.

In essence, Python's combination of readability, versatility, and community
support makes it an excellent choice for both beginners and experienced
developers seeking to tackle a diverse range of programming challenges.

Whether you're building web applications, analyzing data, or developing
machine learning algorithms, Python offers the tools and resources necessary
to bring your ideas to life effectively and efficiently.

Installing Python
Python is an open-source programming language, which means it is free to
use and modify. It can be freely downloaded from the Python software
Foundation’s website at https://www.python.org

https://www.python.org/
https://www.python.org/

#Windows

Installing Python on Windows is indeed straightforward and hassle-free.
Here's a concise guide:

1. Download Python: Visit the Python Software Foundation website
(https://www.python.org/) and download the Python installer
suitable for your Windows version.

1. Run the Installer: Once the download is complete, navigate to the
location of the downloaded executable file (.exe) and double-click
on it to launch the Python installer.

1. Installation Wizard: The installation wizard will guide you through
the setup process. You can customize the installation by selecting
optional features or changing the installation directory if desired.

1. Configure Environment Variables: During the installation process,
ensure that you check the box labeled "Add Python to PATH." This
option automatically configures the system environment variables to
include the Python executable, making it accessible from any
command prompt or PowerShell window.

https://www.python.org/
https://www.python.org/
https://www.python.org/

Figure : 2.0

1. Complete Installation: Follow the prompts in the installation wizard
to complete the installation process. Once the installation is finished,
you can verify that Python is correctly installed by opening a
command prompt and typing python --version. You should see the
installed Python version displayed.

#Linux

Indeed, Linux distributions often come with Python pre-installed. However,
users may wish to install a different version or manage Python installations
themselves. Here are the steps to install Python on Linux:

1. Update Package Lists: Open a terminal and update the package lists to
ensure you have the latest information about available packages. Use the
command:

$ sudo apt update

2. Install Python: Use the package manager to install Python. The package
name might vary slightly depending on your distribution. For Python 3, you
can use:

$ sudo apt install python3

3. Verify Installation: After the installation is complete, verify that Python is
installed correctly by running:

$ python --version

4. Optional: Install pip (Python Package Manager): Pip is a package manager
for Python that allows you to install and manage additional libraries and
packages. You can install pip using the following command:

$ sudo apt install python3-pip

#MacOS

1. Check Python Version (Optional): macOS usually comes with a pre-
installed version of Python 2.x. You can check the version by opening the
Terminal and running:

python --version

2. Install Homebrew (Optional): Homebrew is a package manager for
macOS that simplifies the process of installing software. If you don't have
Homebrew installed, you can do so by running the following command in
Terminal:

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

3. Update Homebrew (Optional): After installing Homebrew, it's a good
idea to update it to ensure you have the latest version of available packages:

brew update

4. Install Python with Homebrew: Use Homebrew to install Python by
running the following command in Terminal:

brew install python

5. Verify Installation: After the installation is complete, verify that Python
is installed correctly by running:

python --version

6. Optional: Install pip (Python Package Manager): If pip is not
installed automatically, you can install it using the following command:

sudo easy install pip

Editors
Editors, or Integrated Development Environments (IDEs), are applications
that enable users to write, edit, debug, and run programming code. They
typically feature user-friendly interfaces with integrated tools, compilers, and
debuggers tailored for specific languages. Some editors support multiple
languages, while others are designed for a particular language.

Popular editors for Python development include:

✅ PyCharm
✅ Visual Studio Code
✅ Sublime Text
✅ Notepad++

Additionally, Python comes with its own integrated environment called
IDLE. IDLE provides an interactive environment for writing and running
Python code, making it particularly useful for practicing coding skills.

Using IDLE
Using IDLE for Python coding is straightforward. Here's how to get started:

1. Launch IDLE:
On Windows, open the Start menu and type "IDLE" to launch the IDLE
editor.
On Linux, open a terminal and type "idle" to launch IDLE.

Figure: 2.1

2. Create a New File:
Once IDLE is open, click on the "File" menu and select "New File," or
simply press Ctrl + N.
This will open a new window where you can start writing your Python code.

3. Write Your Code:
Start writing your Python code in the new file window. You can use all the
features of the IDLE editor, such as syntax highlighting and auto-indentation,
to make coding easier.

4. Run Your Code:
After writing your code, you can run it by clicking on the "Run" menu and
selecting "Run Module," or by pressing F5.
IDLE will execute your code and display the output in the interactive shell
window.

Additionally, Python provides other interactive environments like IPython,
which offers more advanced features and graphical capabilities for Python
coding.

You can also use the native OS shell or command interface for simple
Python coding tasks. This approach works the same way across all operating
systems, including Windows, Linux, and macOS. Simply open a terminal or
command prompt, type "python" to enter the Python interactive shell, and
start coding directly in the shell environment.

Using the Python Interactive Shell

1. Open the Command Line Interface (CLI):

On Windows, type "cmd" into the Windows search bar and
press Enter to open the Command Prompt.
On Linux or macOS, open a terminal window.

2. Launch the Python Interactive Shell:

In the Command Prompt or terminal window, type "python"
and press Enter.
This command starts the Python interpreter and opens the
interactive shell, allowing you to enter Python code and receive
immediate feedback.

Figure: 2.2

That's it! You're now using the interactive Python shell, where you can
experiment with Python code, test small snippets, and explore the language's
features in real-time.

Running Python
Running Python code can be accomplished through various methods and
integrated development environments (IDEs) like PyCharm, Visual Studio
Code, and IDLE. Here's a specific example using Visual Studio Code:

The Visual Studio Code (VS Code)

VS Code is a versatile IDE developed by Microsoft, supporting numerous
programming languages such as C, C++, Java, Python, C#, JavaScript, and
HTML/CSS. It offers IntelliSense extensions to streamline programming
tasks by providing suggestions for classes, functions, variables, and bug

detection and correction. Additionally, VS Code is lightweight and features a
user-friendly interface with buttons for running and debugging code.

#Windows

1. Download VS Code:
Visit the Visual Studio Code website or use the following link to
download the VS Code executable file: Visual Studio Code Download.

1. Run the Installer:

Once the download is complete, double-click on the downloaded
executable file (usually named something like VSCodeSetup.exe) to run
the installer.

1. Follow Installation Instructions:
Follow the on-screen instructions provided by the installer to complete the
installation process. You can choose installation options such as adding
VS Code to the PATH and creating desktop shortcuts.

#Linux

1. Download VS Code:

On Linux, you can install Visual Studio Code using your distribution's
package manager. For example, on Ubuntu, you can use the following
commands in the terminal:

$ sudo apt update

$ sudo apt install code

#MacOS

https://code.visualstudio.com/Download
https://code.visualstudio.com/Download

1. Download VS Code:
Visit the Visual Studio Code website or use the following link to
download the VS Code for macOS: Visual Studio Code Download.

1. Install VS Code:
Once the download is complete, open the downloaded .dmg file.
Drag the Visual Studio Code icon to the Applications folder to install VS
Code on your macOS system.

After installing Visual Studio Code, you can launch it from the Start menu
(Windows), applications menu (macOS), or by typing "code" in the terminal
(Linux).

Running Python code in Visual Studio Code
1. Install Python Extension (if not already installed):

Open Visual Studio Code.
Go to the Extensions view by clicking on the square icon on the
sidebar or pressing Ctrl + Shift + X.
Search for "Python" or “Pylance” in the Extensions view and
install the Python extension provided by Microsoft.

https://code.visualstudio.com/Download
https://code.visualstudio.com/Download

Figure: 2.3

1. Create or Open Python File:

Create a new Python file or open an existing one in Visual Studio Code.
Click on the "File" menu at the top of the VS Code window.
Select "New File" to create a new file.
Name Your Python File:

Type the preferred name of your Python file (e.g., "my_python.py").

Figure: 2.4
1. Write Python Code:

Write your Python code in the editor window. VS Code provides syntax
highlighting and IntelliSense suggestions to assist you while coding.

Figure: 2.5

1. Run Python Code:

To run your Python code, you can use the Run button located in
the toolbar at the top of the editor window. Alternatively, you can
use the keyboard shortcut Ctrl + F5.

VS Code will execute your Python code and display the output in the
integrated terminal.

Figure: 2.6

Executing Python from the Command Line
Running Python code from the command line or shell using the python
command is a simple and universal approach that works across all operating
systems, including Windows, Linux, and macOS.

Here's how you can run Python code from the command line:

Open the Command Line or Terminal:

1. On Windows, open the Command Prompt by searching for "cmd" in
the Start menu.

2. On Linux or macOS, open the Terminal application.
Navigate to the Directory Containing Your Python File (Optional):

1. Use the cd command to navigate to the directory containing your
Python file if it's not already there.

Run the Python File:

1. Type python followed by the name of your Python file and press the
Enter key. For example: python my_script.py

PS C:\Users\Asiedu\Desktop\Project\dev_apps> python my_python.py

View Output (If Any):

If your Python script produces any output, such as printed messages or
results, it will be displayed in the terminal after running the script.
This method provides a straightforward way to execute Python code directly
from the command line or shell, making it convenient for quick tests or
running scripts without the need for an integrated development environment
(IDE) or text editor.

Deep

Python files are commonly recognized by their extension. .py for

regular Python scripts or file and .pyw for scripts that run without
displaying the console window.

Modules or Libraries
Python modules are collections of code that provide additional functionality
to Python programs. These modules are essentially Python files containing
classes, functions and objects that can be imported and used in other Python
scripts. They help simplify coding tasks by providing pre-defined solutions
to common problems, thus saving developers time and effort.

While some modules are included in the Python standard library, many
others are developed and maintained by the Python community. These
external modules cover a wide range of domains and purposes, catering to
diverse needs and preferences. For example, there are modules for web
development, data analysis, machine learning, game development, and much
more.

The beauty of Python modules lies in their versatility and flexibility.
Developers can choose and install only the modules they need for their
specific projects, allowing for a lightweight and efficient development
process. For example, game developers may focus on installing modules
essential for game development, while graphic designers may prefer using
image processing libraries or modules to enhance their workflow.

Moreover, the open-source nature of Python encourages collaboration and
contribution to module development, ensuring a rich ecosystem of tools and
resources for Python programmers worldwide.

Installing Python Modules with Pip
Installing Python modules is straightforward using the pip command, which
is included as part of the Python package. Here's how you can install a
Python module using pip on the command line or shell of any operating
system:

1. Open the Command Line or Terminal:
2. Use the pip Command:

pip install module_name

Press Enter to execute the command.
For example, to install the NumPy module, you would type:

pip install numpy

Once the installation is complete, you can start using the module in your
Python code. Using the module in your Python code is as simple as using the
import keyword followed by the name of the module. For example

Python ●●●

>>> import numpy
>>>

This statement imports the specified module into your Python script,
allowing you to use its classes, functions, and variables within your code.

Note
Import statement will be covered in more detail in later chapters.

Deep

Bugs, also known as errors, are issues in the code that prevent it
from running correctly or producing the expected output. They can
occur due to various reasons, such as logic error, semantic error,
syntax error and runtime error.

Variable

Variable, also known as an identifier, is a term used to describe a letter or
word that stores a value. Variables represent data stored in the computer’s
memory and can consist of any combination of letters, alphabets, or
alphanumeric characters.

For example,

Python ●●●
>>> var = 100 #single value assignment
>>>
>>> var1, var2 = 2, 5 #multiple value assignment (var1 = 2, var2 = 5)
>>>
>>> x = y = “computer” #multiple value assignment (x = “computer”, y =
“computer”)

In the above example:

var is assigned to 100. Therefore, it holds a value of 100 in the computer ޡ
memory.
.var1 and var2 are assigned to 2 and 5 respectively ޡ
.”x and y are assigned to the same value “computer ޡ

Rules for naming Variables

✏ Variables are case sensitive.
example: myvar is not equal to Myvar.

✏ Variables cannot begin with a number but can be followed by numbers.
example: myvar25, my63var.

✏ Variables can begin with underscores.
 example: _myvar

Kinds of Variables

Variables exist in two forms: local and global. Both serve the same purpose
of storing values in computer memory, but their functionality is determined
by the scope in which they are used.

Local Variables

Local variables are declared within a function or block and can only be
accessed by members within the same function. They are not available
outside that block or function.

Python ●●●

global_var = 3

def math: #function
 local_var = 2 #local variable
 value = local_var + 5 #using variable

For example, the variable local_var is defined inside a function called math,
no object outside the math function can access it.

Global Variables

Global variables are declared outside any function or block, making them
accessible to all functions and objects within the program.

Python ●●●

global_var = 3 #global variable
add = global_var + 10

def math: #function
 local_var = 2 #local variable
 value = local_var + global_var #using global variable

For instance, if a variable global_var is defined globally, it can be used both
inside and outside functions. However, global variables can only be
accessed but not modified from within a function unless explicitly specified
using the global or nonlocal keyword.

Python ●●●

city = "London"

def withoutGlobal():
 city = "New York"

def withGlobal():
 global city
 city = "New York"

withoutGlobal() #Executing function
print(city)

withGlobal()
print(city)

#Ouput
London
New York

In a scenario where a variable city is modified inside a function withGlobal,
the global keyword ensures that the change affects the original global
variable, setting its new value to “New York”.

Think about it ?
The nonlocal keyword works similarly to global, but it is primarily used
within nested functions.

But wait… what exactly is a nested function?

Deep
To check if an object is a valid variable name or identifier, use the
.isidentifier() method on the string.
>>> “100var”.isidentifier()
False
>>> “__var”.isidentifier()
True
>>>

Using None in Python

In most programming languages, especially C++, Java, JavaScript, and
Dart, variables can be declared without assigning an initial value. These
variables are often set to null or left empty, allowing them to be assigned a
value later.

However, Python does not allow variables to be declared without assigning a
value. Every declared variable must have an initial value. If a value is meant
to be defined later, Python provides the special keyword None, which
represents an empty or uninitialized variable that will be assigned a value in
the future.

Example Use Case

Python ●●●

country = None
city = "New York"

country = "USA"
print(country)

#Ouput
USA

None is commonly used as a placeholder for variables that will receive a
value later in the program. It helps indicate that a variable is intentionally left
empty rather than undefined.

Think about it ?

Are any of these valid variables?

➡ xyz

➡ 45var

➡ myVar

➡ _6var1

➡ #num

➡ n@um

➡ --first

Comment

Comments in programming serve as a means to document code, offer
explanations, or add notes for better understanding. In Python, comments are
not executed; rather, Python identifies them and skips their execution.
Comments in Python are denoted by the '#' symbol.

For example:

Python ●●●
>>> num1 = 10 #first number
>>> num2 = 20 #second number

Documentation

In Python, apart from using comments (#), you can also use documentation
strings (docstrings) to document a function, class, or module.

Why use docstrings?
Unlike comments, which are useful for short explanations, docstrings are
preferred when the text is too long or when you need structured
documentation. Writing a comment on every line can become tedious,
especially for large blocks of code.

Python uses triple quotes (''' ''' or """ """) for docstrings. These docstrings
are ignored during program execution but can be accessed using Python's
built-in documentation tools, such as help() or .__doc__.

Python ●●●

def Hello():
 """
 This function only returns Helloo
 Wishing you a happy codding
 """
 return "Helloo"

print(Hello.__doc__)

#Ouput
This function only returns Helloo
Wishing you a happy codding

Reserved Words

Python, like many programming languages, has a set of reserved keywords
that serve specific purposes and functions within the language. These
keywords are not available for use as variable names or for any other purpose
in a Python program. Each reserved word carries a distinct and predefined
functionality that is essential for the language's structure and operation.

print chr hex max super finally

len else range raise next type

set if bin sum map or

int True try as with global

dict False eval bool while local

list and not str for catch

object import oct ord zip super

exec del dir any def return

yield hash filter format enumerate delattr

compile bytearray bytes ascii min complex

id local help in open lambda

input None is nonlocal assert class

elif break continue pass from case

match async await pow

Table 4.0: Some keywords used in Python programming

Here are the uses of some keywords

input()
The input() function is used to receive data from the user through a prompt.
By default, it takes input as a string, but the input data can be converted to
any desired type and assigned to a variable.

Example 1

Python ●●●

name = input("What is your name: ")

print(f"Hello {name}")

#Ouput
>>> What is your name: Alice
……. Hello Alice

Example 2

Python ●●●
>>> num1 = int(input("first number: ")) #converting input to integer
…… first number: 2
>>> num2 = int(input("second number: "))

…… second number: 3
>>>
>>> total = num1 + num2
>>> total
……. 5
>>>

Note

The int used above belongs to the integer data type and is used to
convert other types to integers. Integers and other data types will
be covered in detail in the upcoming chapters.

bin()
The bin returns the binary of an integer or a number.

Python ●●●
>>> bin(8)
…… ‘0b1000’
>>>

hex()
The hex keyword returns the hexadecimal of an integer or a number.

Python ●●●
>>> hex(50)
……. ‘0x32’
>>>

oct()
The oct() function returns the octal (base-8) representation of an integer or
number.

Python ●●●
>>> oct(15)
…… '0o17'
>>>

chr()
The chr function accepts an integer and returns its corresponding ASCII
character.

Python ●●●
>>> chr(65)
…… ‘A’
>>> chr(64)

…… ‘@’

Index ASCII Index ASCII Index ASCII Index ASCII

33 ! 40 (49 1 66 B

34 " 42 * 52 4 71 G

35 # 43 + 59 ; 93]

36 $ 44 , 60 < 97 a

37 % 46 . 61 = 109 m

38 & 47 / 63 ? 165 ¥

39 ' 48 0 64 @ 190 ¾

Table 4.1: Some ASCII characters and their corresponding indices

ord()
The ord function accepts an ASCII character in a string and returns its
corresponding integer.

Python ●●●
>>> ord(”B”)
…… 66
>>> ord(”%”)
…… 37

eval()
The eval() function evaluates expressions in string format and applies
mathematical operations to compute the result.

Python ●●●
>>> eval("5+2*3-1/2")
…… 10.5
>>> eval("pow(2,4) -5 + max(10,5)")
…… 21

id()
The id() function returns the memory address of a variable.

Python ●●●
>>>var = "computer"
>>> id(var)

…… 2682500645296

del()
The del statement deletes a variable or object from memory. Attempting to
access a deleted variable will result in an error.

Python ●●●
>>>var = "computer"
>>> del(var)
>>> print(var)
Traceback (most recent call last):
 File "<python-input-19>", line 1, in <module>
 print(var)

Note
Most of the keywords will be covered in detail as you progress through the
next chapters.

Operators

Operators are special symbols that appear between two operands (values or
variables) and instruct the computer to perform specific operations. These
operations can involve mathematical calculations, comparisons, assignments,
and logical evaluations.

The various kinds of Python operators include:

✏ Arithmetic Operators
✏ Relational Operators
✏ Assignment Operators
✏ Logical Operators
✏ Identity Operators
✏ Membership Operators
✏ Bitwise Operators

Arithmetic Operators
Arithmetic operators are used to perform various mathematical functions on
numeric data types in programming. They enable you to perform
fundamental mathematical operations like addition, subtraction,
multiplication, division, and more.

Addition(+)

Python ●●●
>>> x = 5
>>> y = 3

>>> result = x + y
>>> print(result)
…… 8
>>>

Subtraction(-)

Python ●●●
>>> x = 10
>>> y = 6
>>> result = x - y
>>> print(result)
…… 4
>>>

Multiplication(*)

Python ●●●
>>> num1 = 4
>>> num2 = 2
>>> product = num1 * num2
>>> print(product)
…… 8
>>>

Division(/)

Python ●●●
>>> first = 6
>>> second = 2
>>> first / second
…… 3
>>>

Modulo(%)

Python ●●●
>>> x = 3
>>> y = 11
>>> y % x
…… 2
>>>

Floor division(//)

Python ●●●
>>> x = 9
>>> y = 2
>>> x // y
…… 4
>>>

Exponential (**)

Python ●●●
>>> _exp = 2
>>> _num = 4
>>> _num ** _exp
…… 16
>>>

Relational Operators
Relational operators, also known as comparison operators, are essential
components of conditional statements in Python. They are used to compare
two values or operands and determine the relationship between them.
Relational operators return a Boolean value, either ‘True’ or ‘False’, based
on the result of the comparison.
Relational operators are crucial for making decisions in programs. They help
answer questions like "Is this value equal to that one?" or "Is this value
greater than that one?"

Equal to (==)

Python ●●●
>>> “wheat” == “whaet” #equal to
…… False
>>> x, y = 100, 100
>>> x == y
….. True

Not equal to (!=)

Python ●●●
>>> "Computer" != "computer"
…… True
>>> x = y = 4

>>> x != y
…… False

Less than or equal to (<=)

Python ●●●
>>> 10 <= 20
…… True
>>> m = n = 5
>>> m <= n
…… True

Greater than or equal to (>=)

Python ●●●
>>> 10 >= 20
…… False
>>> x, y = 4 , 2
>>> x >= y
…… True

Think about it ?

➡ How is > different from >=?

➡ What about < and <=?

Assignment Operators
Assignment operators serve the primary function of assigning a value on the
right side to a variable on the left side. This assignment results in the variable
holding the assigned value, thereby making it accessible for subsequent
operations or references in your code. In Python, the most commonly used
assignment operator is the equals sign (=), which assigns the value on the
right side to the variable on the left side. For example:

Equal(=)

Python ●●●
>>> x = 5
>>> name, age = “Alice”, 20
>>> y = z = 10
>>>

Addition assignment (+=)

The addition assignment operator adds the right operand to the left operand
and assigns the result to the left operand or the variable.

Python ●●●
>>> x = 5
>>> x += 2
>>> print(x)
…… 7

Subtraction assignment (-=)

The subtraction assignment (-=) operator subtracts the right operand from the
left operand and assigns the result to the left operand or the variable.

Python ●●●
>>> m = 3
>>> m -= 2
>>> print(m)
….. 1

Multiplication assignment (*=)

The multiplication assignment (*=) operator multiplies the left operand by
the right operand and assigns the result to the left operand.

Python ●●●
>>> var = 5
>>> var *= 3
>>> print(var)
…… 15

Division assignment (/=)

The division assignment (/=) operator divides the left operand by the right
operand and assigns the result to the left operand or the variable. The result is
always a float.

Python ●●●
>>> var = 8

>>> var /= 2
>>> print(var)
…… 4.0

Floor division assignment (//=)

The floor division assignment (//=) operator performs floor division
(truncating the decimal part) and assigns the result to the left operand or the
variable.

Python ●●●
>>> n = 17
>>> n //= 4
>>> print(n)
…… 4

Modulus assignment (%=)

The modulus assignment (%=) operator calculates the remainder when the
left operand is divided by the right operand and assigns the result to the left
operand or the variable.

Python ●●●
>>> mod = 12
>>> mod %= 5
>>> print(mod)
…… 2

Exponential assignment (**=)

The exponentiation assignment (**=) operator raises the left operand to the
power of the right operand and assigns the result to the left operand or
variable.

Python ●●●
>>> exp = 4
>>> exp **= 2
>>> print(exp)
…… 16

Logical Operators
Logical operators are essential elements in Python used for making logical
assumptions and decisions. They operate on Boolean values and return either
‘True’ or ‘False’ based on the logical conditions they evaluate. Logical
operators are or, and, not. These operators are mostly used in decision
making structures.

Note
Logical operators are mostly used in if clauses for making conditional
statements or decision-making. This will be studied later under Decision
making statements.

or

The or operator returns True if at least one of the operands is True;
otherwise, it returns False.

Python ●●●
x = 10
if (x < 2 or x > 20): #False or False = False
 print("Great")
else:
 print("Oouch!")

#Output
Oouch!

and

The and operator returns True only if both operands are True; otherwise, it
returns False.

Python ●●●
var = 4
if (var <= 5 and var % 2 == 0): #True and True = True
 print("Awesome Python")
else:
 print("Oouch!")

#Output
Awesome Python

not

The not operator returns the logical negation of the operand, meaning it
converts True to False and False to True.

Python ●●●
var = True
if (not var): #not True = False
 print("Awesome Python")
else:
 print("Oouch!")

#Output
Oouch!

Deep
The if and else statements are conditional statements that control the flow
of a program based on conditions. They will be explored in more detail
under Decision-Making Statements in later chapters.

Identity Operators
Identity operators in Python are tools used to verify or check whether two
variables or objects are stored at the same memory location. They allow you
to determine if two variables or objects refer to the same entity in memory,
rather than comparing their values. Identity operators are essential for
understanding object identity and reference equality. The two identity
operators are is and is not.

Python ●●●
>>> m = n = 10
>>> x = 5
>>> m is n
…… True
>>> m is x
…… False
>>> m is not x
…… True
>>>

Membership Operators

Membership operators in Python are tools used to check if a specific item is
present in a collection of items. These operators are invaluable for
determining whether an element belongs to a set, list, tuple, string, or any
other iterable. They provide a straightforward way to search for the presence
of an item within a container.

Python ●●●

>>> var = "computer"
>>> even = [2, 4, 6, 8]
>>> "com" in var
…… True
>>> "z" in var
…… False
>>> 5 not in even
…… True
>>>

Data Types

Data encompasses raw values that can manifest in various forms, such as
numbers, letters, special characters or a blend thereof. Data types serve to
classify data based on their attributes and functionalities.

In Python, data types represent instances or objects of specific classes, each
characterized by unique traits and behaviors. The Python programming
language encompasses approximately eight fundamental data types. The
various types of data types in Python include:

✏ Numbers (Integer and Float)
✏ String
✏ List
✏ Dictionary
✏ Tuple
✏ Set
✏ Boolean
✏ Bytes

Deep
To check the data type of an object, use the type() function.

>>> var = 3
>>> type(var)
…… class <’int’>
>>> mystr = “Computer”
>>> type(mystr)
…… class <’str’>

Numbers

Number data types include all real numbers, such as positive and negative
integers, decimals, and other numerical values.

Integer
The integer class encompasses all numbers, including negative numbers,
without decimal points. Example include, 2, 13, -5, 100, 2000 ……

Deep
The int() function is employed to convert from one type to the integer type
>>> num = "5" #string to integer
>>> int(num)
…… 5
>>> var = 12.58 #float to integer
>>> int(var)
…… 12

Float
On the other hand, floats represent the class of all numbers with decimal
points. Example include, -6.25, 8.5245, -5.3, 100.6 ……

Deep

To convert from one type to the float type, the float() function is utilized.

>>> dec = "8.258" #string to float
>>> float(dec)
…… 8.258
>>> var = 35 #integer to float
>>> float(var)
…… 35.0

The math Module

The math module provides a wide range of mathematical functions and
constants for performing numerical computations. It includes methods for
working with equations, geometry, trigonometry, logarithms, and more.
These functions are essential for handling mathematical concepts in Python.

Deep
You can explore more methods of math with the dir() function.
>>> import math
>>> dir(math)
…… [………...]

Commonly Used Functions in the math Module

Function Description

math.sqrt(x) Returns the square root of x.

math.pow(x, y) Returns x raised to the power of y (equivalent to x **
y).

math.exp(x) Returns e raised to the power of x.

math.log(x) Returns the natural logarithm (base e) of x.

math.log10(x) Returns the logarithm of x to base 10.

math.log2(x) Returns the logarithm of x to base 2.

math.factorial(x) Returns the factorial of x (x!).

math.gcd(x, y) Returns the greatest common divisor (GCD) of x and
y.

math.lcm(x, y) Returns the least common multiple (LCM) of x and y.

math.fabs(x) Returns the absolute value of x.

math.ceil(x) Rounds x up to the nearest integer.

math.floor(x) Rounds x down to the nearest integer.

math.trunc(x) Returns the truncated integer part of x.

math.modf(x) Splits x into its fractional and integer parts as a tuple.

math.copysign(x,
y)

Returns x with the sign of y.

math.fsum(iterable) Returns the precise sum of an iterable of numbers.

math.isfinite(x) Checks if x is a finite number.

math.isinf(x) Checks if x is infinite (+∞ or -∞).

math.isnan(x) Checks if x is NaN (Not a Number).

pow(x, y)
Python ●●●

import math
>>> pow(2, 4)
…… 16
>>> math.pow(3, 2)
…… 9.0

sqrt(x)

Python ●●●
import math
>>> math.sqrt(25)
…… 5.0

log10(x)

Python ●●●
import math
>>> math.log10(10)
…… 1.0

ceil(x)

Python ●●●
import math
>>> math.ceil(3.845)
…… 4

floor(x)

Python ●●●

import math
>>> math.floor(5.389)
….. 6

factorial(x)

Python ●●●
import math
>>> math.factorial(6)
…… 720

Trigonometric Functions

Function Description

math.sin(x) Returns the sine of x (in radians).

math.cos(x) Returns the cosine of x (in radians).

math.tan(x) Returns the tangent of x (in radians).

math.asin(x) Returns the arcsine of x (inverse of sine).

math.acos(x) Returns the arccosine of x (inverse of cosine).

math.atan(x) Returns the arctangent of x (inverse of tangent).

math.degrees(x) Converts x from radians to degrees.

math.radians(x) Converts x from degrees to radians.

math.sinh(x) Returns the hyperbolic sine of x.

math.cosh(x) Returns the hyperbolic cosine of x.

math.tanh(x) Returns the hyperbolic tangent of x.

math.asinh(x) Returns the inverse hyperbolic sine of x.

math.acosh(x) Returns the inverse hyperbolic cosine of x.

math.atanh(x) Returns the inverse hyperbolic tangent of x.

sin(x)

Python ●●●
import math
>>> math.sin(45)
…… 0.8509035245341184

cos(x)

Python ●●●
import math
>>> math.cos(90)
…… -0.4480736161291701

tan(x)

Python ●●●
import math
>>> math.tan(30)
…… 0.15425144988758405

Mathematical Constants

Function Description

math.pi Represents the value of π (3.14159...).

math.e Represents Euler's number (2.71828...), the base of
natural logarithms.

math.tau Represents the constant τ (τ = 2π).

math.inf Represents positive infinity (+∞).

math.nan Represents "Not a Number" (NaN).

Special Functions

Function Description

math.erf(x) Returns the error function of x.

math.erfx(x) Returns the complementary error function of x.

math.gamma(x) Returns the gamma function of x ((x-1)!).

math.lgamma(x) Returns the natural logarithm of the absolute value of
the gamma function of x.

String

A string is a sequence of characters, including alphabets, numbers, or special
characters, enclosed within quotes. String can be in a single or double quote.

For example,

Python ●●●
>>> var1 = 'single'
>>> var2 = "double"
>>> var3 = ' ' ' triple ' ' '
>>> var4 = " " " triple " " "

Deep
The str() method is used to convert other data types to a string.
>>> var = 3.45
>>> string_var = str(var)
>>> print(string_var)
….. ’3.45’
>>>

String indexing

Indexing refers to the position of each character in a string. The index of a

string starts from zero and goes up to the length of the string minus one (0 to
length-1). The first character or element of a string typically occupies index
0, the next character takes index 1, and so on.

For example, using “computer”

0 1 2 3 4 5 6 7

c o m p u t e r

-8 -7 -6 -5 -4 -3 -2 -1

Python ●●●
>>> var = "computer"
>>> var[0]
…… ‘c’
>>> var[1]
…… ‘o’
>>> var[-6]
…… ‘m’
>>>

Concatenating string

Concatenating strings involves adding two or more separate strings to form

one complete string using the plus (+) operator.

For example,

Python ●●●
>>> var1 = "com"
>>> var2 = "puter"
>>> var3 = var1 + var2
>>> print(var3)
…… ‘computer’
>>>

Slicing a string

String slicing allows you to extract substrings from a string. The syntax for
string slicing is string[start : end], where start indicates where the slicing
should begin and end indicates where it should end. Both start and end
parameters can be omitted, in which case Python will set them to default
values (0 for start and the last index of the string for end).

Formulas for String Slicing

string[start:
end]

→ Returns a substring starting from the specified start
index up to (but not including) the end index.

string[start:] → Returns a substring starting from the specified start
index to the end of the string.

string[: end] → Returns a substring starting from the beginning (index
0) up to (but not including) the specified end index.

string[:] → Returns the entire string from index 0 to the last
character.

For example,

Python ●●●
>>> var = "Hello World"
>>> var[0:5] #start = 0, end=5
…… 'Hello'
>>> var[6:] #start = 6, end= length of string
…… 'World'
>>> var[:3] #start = 0, end=3
…… 'Hel'
>>> var[1:5] #start = 1, end=5
…… 'ello'
>>>

String Methods

Deep

To view the various methods available for a string, use the dir() function on
a string object.
>>> mystring = “Hello World”
>>> dir(mystring)
…… […………]

Case Conversion Methods

upper() Converts all characters in the string to uppercase.

lower() Converts all characters in the string to lowercase.

capitalize() Converts the first character of the string to uppercase and
the rest to lowercase.

title() Converts the first character of each word in the string to
uppercase.

swapcase() Swaps uppercase characters to lowercase and vice versa.

casefold() Converts the string to lowercase, more aggressive than
lower(), used for case-insensitive comparisons.

Python ●●●

>>> var = "The brown fox"
>>>
>>> var.upper()
…… 'THE BROWN FOX'
>>>
>>> var.lower()
…… 'the brown fox'
>>>
>>> var.capitalize()

…… 'The brown fox'
>>>
>>> var.title()
…… 'The Brown Fox'
>>>
>>> var.swapcase()
…… 'tHE BROWN FOX'
>>>
>>> var.casefold()
…… 'the brown fox'
>>>

Whitespace and Padding Methods

strip() Removes leading and trailing whitespace.

lstrip() Removes leading (left-side) whitespace.

rstrip() Removes trailing (right-side) whitespace.

zfill(width) Pads the string with zeros (0) on the left to match the given
width.

center(width,
char)

Centers the string within a given width using the specified
character (default is space).

ljust(width,
char)

Left-aligns the string within a given width, padding with
the specified character.

rjust(width,
char)

Right-aligns the string within a given width, padding with
the specified character.

Python ●●●
>>> mystring = " let me have a coffee. "
>>>
>>> mystring.strip()
…… 'let me have a coffee.'
>>>
>>> mystring.lstrip()
…… 'let me have a coffee '
>>>

>>> mystring.rstrip()
…… ' let me have a coffee'
>>>
>>> mystring.zfill(30)
…… '000000 let me have a coffee '
>>>
>>> mystring.center(30, ‘@’)
…… '@@@ let me have a coffee @@@'
>>>
>>> mystring.ljust(28, ‘$’)
…… ' let me have a coffee $$$$'
>>>
>>> mystring.rjust(28, ‘$’)
…… '$$$$ let me have a coffee '

Searching and Finding Methods

find(substring, start,
end)

Returns the index of the first occurrence of
substring in the string. Returns -1 if not found.

rfind(substring, start,
end)

Similar to find(), but searches from the right.

index(substring, start,
end)

Similar to find(), but raises an error if the substring
is not found.

rindex(substring,
start, end)

Similar to rfind(), but raises an error if the substring
is not found.

count(substring, start,
end)

Counts the occurrences of substring in the string.

Python ●●●
>>> var = "Programming"
>>>
>>> len(var) #returns the length of the string
…… 11
>>>
>>> var[0] #returns a character by the index
…… 'P'
>>>
>>> var.find("o" ,1, 6)
…… 2

>>> var.find("g") #returns the first occurrence of g
…… 3
>>>
>>> var.rfind("g") #returns the last occurrence of g
…… 10
>>>
>>> var.index("r" , 1, 6) #start from index 1 (r) , end at index 5 (a)
…… 1
>>>
>>> var.rindex("r" , 1, 6) #start from index 1 (r) , end at index 5 (a)
…… 4
>>>
>>> var.count("m")
…… 2
>>>

Splitting and Joining Methods

split(delimiter,
maxsplit)

Splits the string into a list using the specified
delimiter. The optional maxsplit limits the number
of splits.

rsplit(delimiter,
maxsplit)

Similar to split(), but splits from the right.

splitlines(keepends) Splits the string at line breaks (\n) and returns a list.
If keepends=True, line breaks are kept.

partition(separator) Splits the string into three parts: before separator,
separator, and after separator.

rpartition(separator) Similar to partition(), but searches from the right.

join(iterable) Joins elements of an iterable (list, tuple) into a
string using the calling string as a separator.

Python ●●●
>>> var = "coding @ with @ coffee"
>>>
>>> substring = var.split() #delimiter is the default whitespace
>>> print(substring)
…… ['coding', '@', 'with', '@', 'coffee']
>>>
>>> substring = var.split("@") #delimiter is the “@”
>>> print(substring)

…… ['coding ', ' with ', ' coffee']
>>>
>>> substring = var.split("@" , 1) #delimiter is the “@”,
maxsplit is 1
>>> print(substring)
…… ['coding ', ' with @ coffee']

Python ●●●

>>> var = "Crack Codes-Great Python!"
>>>
>>> substring = var.partition(" ")
>>> print(substring)
…… ('Crack', ' ', 'Codes-Great Python!')
>>>
>>> substring = var.partition("-")
>>> print(substring)
….. ('Crack Codes', '-', 'Great Python!')
>>>
>>>
>>> var = "Programming"

>>> substring = " - ".join(var)
>>> print(substring)
…… P - r - o - g - r - a - m - m - i - n – g

String Modification and Replacement Methods

replace(old, new,
count)

Replaces occurrences of old with new. The optional
count limits the number of replacements.

removeprefix(char) Removes the specified leading character or
substring from a string.

removesuffix(char) Removes the specified trailing character or
substring from a string.

Python ●●●
>>> newstring = "The big brown cat"
>>>
>>> newstring.replace("cat", "fox")
…… 'The big brown fox'
>>>
>>> substring = "Crack Codes and Coffee ".replace("C", "K", 2)
>>> print(substring)
…… 'Krack Kodes and Coffee'

Python ●●●
>>> var = "*programming"
>>>

>>> var.removeprefix("*")
…… 'programming'
>>>
>>> var.removesuffix("ming")
…… '*program'

String Checking Methods (True or False)

startswith(prefix,
start, end)

Returns True if the string starts with prefix.

endswith(suffix, start,
end)

Returns True if the string ends with suffix.

isalpha() Returns True if the string contains only alphabetic
characters (A-Z, a-z).

isdigit() Returns True if the string contains only digits (0-9).

isalnum() Returns True if the string contains only
alphanumeric characters (letters and numbers).

isspace() Returns True if the string contains only whitespace
characters.

islower() Returns True if all characters in the string are
lowercase.

isupper() Returns True if all characters in the string are
uppercase.

istitle() Returns True if the string follows title case (each
word starts with an uppercase letter).

isnumeric() Returns True if the string contains only numeric
characters, including Unicode numerals.

isdecimal() Returns True if the string contains only decimal

characters.

isidentifier() Returns True if the string is a valid Python
identifier (variable name).

isascii() Returns True if the string contains only ASCII
characters (0-127).

Python ●●●
>>> "computer".startswith("com")
….. True
>>> "computer".endswith("k")
….. False

>>> "coding".isalpha()
….. True
>>> "code250".isalpha()
….. False

>>> "code250".isdigit()
….. False
>>> "250".isnumeric()
….. True

>>> "code250".isalnum()
….. True

>>> "code250@_#".isalnum()
….. False

>>> "code250@_#".isascii()
….. True

>>> second_char = "I love programming"[1]
>>> second_char.isspace()
….. True

>>> "Programming".isupper()
….. False
>>> "PROGRAMMING".isupper()
….. True

>>> "Programming".islower()
….. False
>>> "programming".islower()
….. True

>>> "Python Programming".istitle()
….. True
>>> "Python programming".istitle()
….. False

>>> "_var".isidentifier()

….. True
>>> "23var".isidentifier()
….. False

String Formatting

In Python, inserting variables into a string to make the output dynamic is
called string formatting. Instead of directly placing a variable inside a
string (which would be treated as plain text), Python provides multiple ways
to format strings properly.

❌ Wrong formatting

Python ●●●

var = 100
print(" Total is var")

#Output
Total is var

Here, var is treated as part of the string instead of a variable.

Python provides three main ways to format strings properly:

1. Using f-strings (f"" notation) – Recommended
Introduced in Python 3.6, f-strings allow embedding variables directly into a
string using curly brackets { }.

Syntax:

f"{variable or expression}"

Example 1,

Python ●●●

var = 100
print(f" Total is { var }")

#Output
Total is 100

Example 2,

Python ●●●
import math
num = 16
print(f" The final answer is { math.sqrt(num) * 2 }")

#Output
The final answer is 8.0

2. Using .format() method
Before f-strings, the .format() method was commonly used. It replaces {}
placeholders with values passed inside .format().

Syntax:

"{}".format(variable)
"{}{}".format(variable1, variable2)
"{1} {0}".format(variable1, variable2) # Positional indexing

Example 1,

Python ●●●
var = 25

results = "Alice is {} years".format(var)
print(results)

#Output
'Alice is 25 years'

Example 2,

Python ●●●

name = "John"
age = 30

profile = "Name: {}, Age: {}".format(name, age)
print(profile)

#Output
'Name: John, Age: 30'

Example 3,

Python ●●●

planets = "The fourth planet is {1} and third is
{0}".format("earth","mars")
print(planets)

#Output
The fourth planet is mars and third is earth

3. Using % Formatting (Old Method)
Older versions of Python (before 3.6) used % for formatting, similar to C-
style formatting. This method is mostly deprecated in favor of f-strings and
.format().

Example 1

Python ●●●

price = 100

print("Total is $%d" % price) # %d is for integers

#Output
Total is $100

Escape Characters in Python

In programming, escape characters are special sequences used to format
strings by providing short commands that instruct the compiler on how to
display text. These commands help in creating new lines, adding tab spaces,
inserting special symbols, and more.

Escape characters always begin with a backslash (\), followed by a specific
character that represents an action. Below is a list of commonly used escape
characters in Python:

Escape
Character

Description

\n Inserts a new line (line break)

\t Adds a horizontal tab space

\\ Inserts a backslash (\)

\’ Inserts a single quote (') inside a string enclosed in
single quotes

\” Inserts a double quote (") inside a string enclosed in
double quotes

\r Carriage return – moves the cursor to the beginning of
the line

\b Backspace – removes the previous character

\f Form feed – moves to the next page (used in printing)

\v Vertical tab – adds a vertical tab space

\000 Represents an octal value (e.g., \101 represents 'A')

\xhh Represents a hexadecimal value (e.g., \x41 represents
'A')

Table 6.0 : The escape characters

Example, using newline (\n)

Python ●●●

print("Hello everyone! \nDo you like Python?")

#Output
Hello everyone!
Do you like Python?

List

A list is a collection of items of the same type or different types, enclosed in
square brackets []. Lists perform functions similar to arrays in C, C++, and
Java. They can contain other lists, making them a preferred choice for storing
large data of different types.

For example,

Python ●●●
>>> even = [2, 4, 6, 8, 10] #list
of numbers
>>> items = [“mouse”, “keyboard”, “microphone”] #list of string
>>> mix = [5, “mouse”, 4.25, (‘age’, 30), {‘name’ : ”John”}, [2, 4]]
 #list of different types
>>>

Note
The first element of a list occupies index 0, the next at index 1 and so on.
For example, cities = [“London”, “New York”, “Ontario”, “Chicago”]

item London New York Ontario Chicago

index 0 1 2 3

Accessing Items in a List
Elements of a list can be retrieved by specifying their index within
square brackets ([]).
For example,

Python ●●●
>>> cities = ["London", "New York", "Ontario", "Chicago"]
>>> cities[0]
…… 'London'
>>> cities[2]
…… 'Ontario'
>>>

Deep
The list() function is used for converting other data types to list.
>>> list(”programming”)
…… ['p', 'r', 'o', 'g', 'r', 'a', 'm', 'm', 'i', 'n', 'g']
>>>

Slicing a list

Lists can be divided to obtain sub-lists using slicing notation list[start : end].
The start parameter is optional and specifies where the division should begin.

If start is not set, Python begins the division from the first element (index 0).
Similarly, the end parameter is optional. If not specified, Python sets it to the
last index of the list.

Formulas for Slicing a List

list[start:
end]

→ Returns a sub list starting from the specified start index
up to (but not including) the end index.

list[start:] → Returns a sub list starting from the specified start index
to the end of the list.

list[: end] → Returns a sub list starting from the beginning (index 0)
up to (but not including) the specified end index.

list[:] → Returns the entire list from index 0 to the last character.

For example,

Python ●●●
>>> cities = ["London", "New York", "Ontario", "Chicago"]
>>> cities[1:3]
…… ['New York', 'Ontario']

>>> cities[1:]
…… ['New York', 'Ontario', 'Chicago']

>>> cities[:2]

…… ['London', 'New York']
>>>

List Methods

Method Description

append(item) Adds an item to the end of the list.

extend(iterable) Extends the list by appending elements from an
iterable (e.g., another list, tuple, or set).

insert(index, item) Inserts an item at a specified position in the list.

remove(item) Removes the first occurrence of the specified item
from the list.

pop(index=-1) Removes and returns the item at the given index. If
no index is specified, removes the last item.

clear() Removes all elements from the list, making it empty.

index(item, start,
end)

Returns the index of the first occurrence of an item.
Raises an error if the item is not found.

count(item) Returns the number of times an item appears in the
list.

sort(key, reverse) Sorts the list in ascending order by default. You can
use reverse=True for descending order and key for
custom sorting.

reverse() Reverses the order of elements in the list.

copy() Returns a shallow copy of the list.

append(item)

Python ●●●
>>> num = [2, 4]
>>> num.append(6)

>>> print(num)
….. [2, 4, 6]

>>> var = ["apple", "berry", "banana"]
>>> var.append("orange")

>>> print(var)
…… ['apple', 'berry', 'banana', 'orange']

extend(iterable)
Python ●●●

>>> even = [2, 4]
>>> odd = [5, 7]

>>> even.extend(odd)
>>> print(even)
…… [2, 4, 5, 7]

insert(index, item)
Python ●●●

>>> var = [2, 4]

>>> var.insert(1, 3)
>>> print(var)
…… [2, 3, 4]

remove(item)
Python ●●●

>>> lang = ["English", "French", "Spanish"]

>>> lang.remove("French")
>>> lang
….. ['English', 'Spanish']

pop(index)
Python ●●●

>>> lang = ["English", "French", "Dutch", "Spanish"]

>>> lang.pop()

…… 'Spanish'
>>> lang
…… ['English', 'French', 'Dutch']

>>> lang.pop(0)
….. 'English'
>>> lang
…… ['French', 'Dutch']

clear()
Python ●●●

>>> var = [1, 2, 3]

>>> var.clear()
>>> print(var)
…… []

index(item, start, end)
Python ●●●

>>> country = ["USA", "Canada", "Ukraine", "USA", "Rusia"]

>>> country.index("USA")
….. 0
>>> country.index("USA", 1) #start = 1 , end = length of the list
….. 3

count(item)
Python ●●●

>>> var = [1, 2, 3, 2, 4]

>>> var.count(2)
…… 2
>>> var.count(4)
…… 1

sort(reverse)
Python ●●●

>>> num = [5, 3, 2, 4, 1]

>>> num.sort()
>>> num
…… [1, 2, 3, 4, 5]

>>> num.sort(reverse = True)
>>> num
….. [5, 4, 3, 2, 1]

>>> letters = ['c', 'a', 'b', 'd']
>>> letters.sort()
>>> letters
…… ['a', 'b', 'c', 'd']

reverse()
Python ●●●

>>> program = ["Python", "Java", "C++"]
>>> program.reverse()
>>> program
…… ['C++', 'Java', 'Python']

copy()
Python ●●●

>>> my_list = [1, 3, 5]
>>> copied = my_list.copy()
>>> print(copied)
…… [1, 3, 5]

Other List Methods

Method Description

len(list) Returns the number of elements in the list.

max(list) Returns the maximum value in the list (if elements
are comparable).

min(list) Returns the minimum value in the list.

sum(list) Returns the sum of all numerical elements in the list.

list(iterable) Converts an iterable (e.g., tuple, string, or set) into a
list.

sorted(list, key,
reverse)

Returns a new sorted list without modifying the
original.

any(list) Returns True if at least one element in the list is
truthy, otherwise False.

all(list) Returns True if all elements in the list are truthy,
otherwise False.

enumerate(list,
start)

Returns an enumerate object that contains index-
value pairs.

len(), sum(), min() and max()

Python ●●●

>>> var = [6, 1, 3]

>>> length = len(var)
>>> print(length)
….. 3

>>> total = sum(var)
>>> print(total)
…… 10

>>> minimum = min(var)
>>> print(minimum)
….. 1

>>> maximum = max(var)
>>> print(maximum)
…… 6

Using iter() and __iter__() to Iterate Over a List

Iteration is the process of accessing each item in a sequence (such as a list,
tuple, set, or dictionary) one at a time.
Python makes iteration simple and flexible, especially when working with
lists. In many other programming languages, iterating over arrays (Python’s
equivalent of lists) is typically done using loops (for, while, and do-while).
However, Python provides an alternative approach using the iter() function
and the __iter__() method along with next() or __next__().

iter()

Python ●●●

var = [2, 4, 6]
items = iter(var)
print(next(items))
print(next(items))
print(next(items))

#Output
2
4
6

✏ iter(var) creates an iterator for the list.
✏ next(items) retrieves the next item in the list.
✏ When there are no more items, calling next() again raises a StopIteration

error.

__iter__()

Python ●●●

program = ["Java", "Python", "C++"]
items = program.__iter__()
print(next(items))
print(next(items))
print(next(items))

#Output
Java
Python
C++

✏ __iter__() is automatically called when using iter(), but it can also be
accessed explicitly.
✏ The result is an iterator that can be used with next().

__next__()

Python ●●●

cities = ["New York", "London", "Toronto"]
items = cities.__iter__()
print(items.__next__())
print(items.__next__())
print(items.__next__())

#Output
New York
London
Toronto

Tuple

Tuples are collections of elements of different data types enclosed in
parentheses () and separated by commas. The elements of tuples are
immutable, meaning they cannot be changed once created, but they can still
be accessed.

For example,

Python ●●●
>>> tup1 = (3, 4, 2) #tuple
of numbers
>>> tup2 = (“Python”, “Java”, “C++”)
#tuple of strings
>>> tup3 = (5, 3.25, (‘id’, 30), “Texas”, {‘name’ : ”Alice”}, [6, 2])
#tuple of different types
>>>

Deep
The tuple() function is used to convert other data types to tuple.

>>> var = "code" #string to tuple
>>> tuple(var)
….. ('c', 'o', 'd', 'e')

>>> var = ["USA", "Spain", "Italy"] #list to tuple
>>> tuple(var)
….. ('USA', 'Spain', 'Italy')

>>> var = {2, 4, 6, 8} #set to tuple
>>> tuple(var)
…… (8, 2, 4, 6)

Accessing Elements from a Tuple

Tuples, like other iterables such as strings and lists, allow elements to be
accessed using indexing. Each element in a tuple is assigned an index,
starting from 0 for the first element, 1 for the second, and so on. For
example,

Python ●●●
>>> planets = ("mercury", "venus", "earth", "mars")
>>> planets[0]
….. 'mercury'

>>> planets[2]
…… 'earth'

>>> profile = (("Alice", 25), ("John", 30), ("Bob", 10))

>>> profile[0]
…… ('Alice', 25)

>>> profile[1][0]
….. 'John'

>>> profile[2][1]
…... 10

Tuple Methods

Method Description

index(item, start,
end)

Returns the index of the first occurrence of the specified
value. Raises a ValueError if the value is not found.

count(item) Returns the number of times a specified value appears
in the tuple.

index(item, start, end)
Python ●●●

>>> tup = ("apple", "berry", "banana")

>>> tup.index("apple")
….. 0

>>> tup.index("banana")
….. 2

count(item)
Python ●●●

>>> var = (2, 3, 4, 2)

>>> var.count(2)
….. 2

Other Tuple Methods

Method Description

len(iterable) Returns the number of elements in the tuple.

sum(iterable) Returns the sum of all elements in a tuple (works for
numeric values).

max(iterable) Returns the maximum value in a tuple (works if elements
are comparable).

min(iterable) Returns the minimum value in a tuple.

sorted(iterable) Returns a sorted list of tuple elements.

len(iterable)

Python ●●●

>>> var = (5, 3, 4)
>>> len(var)
….. 3

sum(iterable)

Python ●●●
>>> var = (40, 20, 35 , 10)
>>> sum(var)
…… 105

sum(iterable)
Python ●●●

>>> var = (4, 6, 2)
>>> sum(var)
…… 12

max(iterable)
Python ●●●

>>> var = (20, 2, 10)
>>> max(var)
…… 20

min(iterable)

Python ●●●
>>> var = (20, 2, 10)
>>> min(var)
…… 2

sorted(iterable)
Python ●●●

>>> letters = ('d', 'b', 'e', 'a', 'c')
>>> sorted = sorted(letters)
>>> print(sorted)
…… ['a', 'b', 'c', 'd', 'e']

Dictionary

A dictionary is a data structure that consists of a collection of key-value pair
items, separated by commas, and enclosed within curly braces { }.
Dictionaries can contain items of various data types. In a key-value pair, one
item (the key) is associated with another item (the value), and they are linked
by a colon (key : value).

For example,

Dictionary_name = { key : value }

Python ●●●
>>> dict1 = {’name’ : “Alice”, ‘age’ : 20, ‘country’ : “USA”}
>>> dict2 = {’numbers’ : [2, 4], ‘languages’ : (“Python”, “Java”) }
>>> dict3 = { 1 : 100, 2 : 200, 3 : 300}
>>>

Note

Dictionary keys can be either numbers or strings, whereas values can be
any object, including strings, numbers, dictionaries, tuples, sets, and bytes.
Dictionary keys are immutable.

Deep
The dict() function is used to convert other data types (tuple) to dictionary.

>>> var = ((“name”, “John”), (“ID”, 250), (“city”, “London”)) #Tuple
>>> dict(var)
…... {'name': 'John', 'ID': 250, 'city': 'London'}
>>>

Dictionary Methods

Method Description

get(key, default) Returns the value of the key. If the key is not found,
returns the specified default value.

items() Returns a view of all dictionary key-value pairs as
tuples.

keys() Returns a view of all dictionary keys.

values() Returns a view of all dictionary values.

pop(key, default) Removes and returns the value for the specified key. If
the key is not found, returns the default value.

popitem() Removes and returns the last inserted key-value pair
as a tuple.

update(iterable) Updates the dictionary with key-value pairs from
another dictionary or iterable of key-value pairs.

setdefault(key,
default)

Returns the value of the key if present; otherwise,
inserts the key with the specified default value.

fromkeys(seq,
value)

Creates a new dictionary from a sequence of keys, all
having the specified value.

copy() Returns a shallow copy of the dictionary.

clear() Removes all key-value pairs from the dictionary.

In a dictionary, values can be accessed using their corresponding keys in two

ways:

① Using Square Brackets (dictionary[key])
This method retrieves the value associated with the specified key.
However, if the key does not exist in the dictionary, it raises a
KeyError.

Python ●●●
>>> program = {1: "Python", 2: "Java", 3: "C++"}
>>> program[1]
…… 'Python'

>>> program[3]
…… 'C++'

>>> profile = {"name": "Alice", "age": 25}
>>> profile["name"]
….. 'Alice'

>>> profile["age"]
…… 25

② Using the get(key) Method
The get() method returns the value associated with the specified
key. Unlike square brackets, if the key is not found, it returns None
(or a default value if specified), preventing potential errors.
get(key)

Python ●●●
>>> profile = {"name": "Alice", "age": 25}

>>> profile.get("name")
…… 'Alice'

>>> profile.get("age")
…… 25

Updating Dictionary Items

Dictionary values can be updated in two ways:

① Using the square bracket notation
(dictionary_name[key] = value)
This method updates the value of an existing key or adds a new key-value
pair if the key does not exist.

dictionary_name[key]

Python ●●●

>>> profile = {"name": "Alice", "age": 25}

>>> profile["name"] = "Bob"
>>> print(profile)
…… {'name': 'Bob', 'age': 25}

>>> profile["country"] = "Italy"
>>> print(profile)
…… {'name': 'Bob', 'age': 25, 'country': 'Italy'}

② Using the update() method
This method allows multiple updates at once by passing a dictionary of key-
value pairs.

update(iterable)

Python ●●●
>>> profile = {"name": "Alice", "age": 25}

>>> profile.update({"name": "Bob", "city": "London"})
>>> print(profile)
…… {'name': 'Bob', 'age': 25, 'city': 'London'}

setdefault(key, default)

Python ●●●

>>> person = {"name": "Bob"}

>>> person.setdefault("name", "Alice")
…… 'Bob'

>>> print(person)
…… {'name': 'Bob'}

>>> person.setdefault("college", "Harvard")
…… 'Harvard'

>>> print(person)
….. {'name': 'Bob', 'college': 'Harvard'}

copy() and clear()

Python ●●●
>>> profile = {"name": "Alice", "age": 25}

>>> new_dict = profile.copy()
>>> print(new_dict)
…… {'name': 'Alice', 'age': 25}

>>> profile.clear()
>>> print(profile)
…… { }

pop(key, default)
Python ●●●

>>> student = {"firstname":"John", "lastname":"Wood", "index":3251,
"GPA":3.7}

>>> student.pop("lastname")
…… 'Wood'

>>> print(student)
….. {'firstname': 'John', 'index': 3251, 'GPA': 3.7}

popitem()
Python ●●●

>>> student = {"firstname":"John", "lastname":"Wood", "index":3251,
"GPA":3.7}

>>> value = student.popitem()

>>> print(value)
…… ('GPA', 3.7)

>>> print(student)
…… {'firstname': 'John', 'lastname': 'Wood', 'index': 3251}

items(), keys() and values()
Python ●●●

>>> animals = {'wild':['lion', 'snake'], 'domestic':['dog', 'cat'], aquatic':
'Tilapia'}

>>> animals.items()
….. dict_items([('wild', ['lion', 'snake']), ('domestic', ['dog', 'cat']), ('aquatic',
'Tilapia')])

>>> animals.keys()
…… dict_keys(['wild', 'domestic', 'aquatic'])

>>> animals.values()
…… dict_values([['lion', 'snake'], ['dog', 'cat'], 'Tilapia'])

Set

A set is an unordered collection of unique elements. Sets enclose their
members within curly braces { }. Sets can hold members of strings, integers,
floats, and tuples, but not dictionaries, lists, or other sets. Sets are commonly
used to perform mathematical operations such as intersection, union, or
symmetric difference.

For example,

Python ●●●
>>> set1 = {1, 3, 5, 7}
>>> set2 = {"a", "b", "c", "d"}
>>> set3 = {2, 4, 6, "orange", "apple" }

Deep
The set() function is used to convert other data types to set.

>>> list_var = [2, 3, 5] #list to set
>>> set(list_var)
…… {2, 3, 5}

>>> string_var = "Hello" #string to set
>>> set(string_var)
….. {'l', 'H', 'o', 'e'}

>>> tuple_var = (2, 5, 8) #string to set
>>> set(tuple_var)

…… {8, 2, 5}

>>> dictionary_var = {1:'Python', 2:'Java', 3:'C#'} #dictionary to set
>>> set(dictionary_var)
…… {1, 2, 3}

Set Methods

Method Description

add(item) Adds an element or item to the set. If
the element already exists, it does
nothing.

copy() Returns a shallow copy of the set.

clear() Removes all elements from the set,
making it empty.

difference(*sets) Returns a new set with elements that
are in the original set but not in the
given set(s).

difference_update(*sets) Removes elements from the original set
that are present in the given set(s).
Modifies the original set.

discard(item) Removes the specified item from the
set if it exists. Does nothing if the
element is not found.

remove(item) Removes the specified item from the
set. Raises a KeyError if the element is
not found.

pop() Removes and returns a random element
from the set. Raises a KeyError if the
set is empty.

intersection(*sets) Returns a new set containing elements

common to the original set and all
given set(s).

intersection_update(*sets) Modifies the original set to keep only
elements also found in all given set(s).

isdisjoint(set) Returns True if the set has no elements
in common with other set, otherwise
returns False.

issubset(set) Returns True if all elements of the set
are in other set, otherwise returns
False.

issuperset(set) Returns True if the set contains all
elements of other set, otherwise returns
False.

union(*set) Returns a new set containing all unique
elements from the original set and
given set(s).

update(*sets) Adds elements from given set(s) to the
original set. Modifies the original set.

symmetric_difference(set) Returns a new set with elements that
are in either the set or other set, but not
both.

symmetric_difference_update(set) Modifies the original set to include
only elements unique to either set.

add()
Python ●●●

>>> even = {2, 4, 6}
>>> even.add(8)
>>> print(even)
..… {8, 2, 4, 6}
>>>

update(*set)
Python ●●●

>>> set1 = {2, 4}
>>> set2 = {1, 3}
>>> set1.update(set2)
>>> print(set1)
….. {1, 2, 3, 4}

>>> rainbow = {"blue","purple", "white"}
>>> primary, secondary = {"red", "green"}, {"yellow","orange"}
>>> rainbow.update(primary, secondary)
>>> rainbow
…… {'red', 'blue', 'white', 'orange', 'purple', 'green', 'yellow'}

copy()

Python ●●●

>>> even = {2, 4, 6}
>>> copied = even.copy()
>>> print(copied)
…... {2, 4, 6}
>>>

discard(item)
Python ●●●

>>> even = {1, 4, 8}
>>> even.discard(4)
>>> print(even)
…… {8, 1}
>>>

remove(item)
Python ●●●

>>> num = {3, 6, 9}
>>> num.remove(3)
>>> print(num)
…… {9, 6}
>>>

pop()

Python ●●●

>>> num = {3, 6, 9}
>>> num.pop()
…… 9
>>> print(num)
…… {3, 6}
>>>

clear()
Python ●●●

>>> var = {'a', 'b', 'c', 'd'}
>>> var.clear()
>>> print(var)
…… set()
>>>

difference(*set)
Python ●●●

>>> U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
>>> even = {2, 4, 6, 8, 10}
>>> difference = U.difference(even)
>>> print(difference)
…… {1, 3, 5, 7, 9}
>>>

difference_update(*set)
Python ●●●

>>> U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
>>> even = {2, 6, 10}
>>> odd = {3, 5, 9}
>>> U.difference_update(even, odd)
>>> print(U)
…… {1, 4, 7, 8}
>>>

intersection(*set)
Python ●●●

>>> setA = {1, 4, 6, 8}
>>> setB = {2, 3, 4, 5}
>>> setC = setA.intersection(setB)
>>> print(setC)
…… {4}
>>>

intersection_update(*set)
Python ●●●

>>> setA = {3, 6, 9, 12}
>>> setB = {2, 6, 10, 12}
>>> setA.intersection_update(setB)
>>> print(setA)
…… {12, 6}
>>>

symmetric_difference(*set)
Python ●●●

>>> setA = {3, 6, 9, 12}
>>> setB = {2, 6, 10, 12}
>>> result = setA.symmetric_difference(setB)
>>> print(result)
…… {2, 3, 9, 10}
>>>

union(*set)
Python ●●●

>>> even = {2, 4, 6}
>>> odd = {1, 3, 5}
>>> U = even.union(odd)
>>> print(U)
….. {1, 2, 3, 4, 5, 6}
>>>

isdisjoint(set)
Python ●●●

>>> even = {2, 4, 6}
>>> odd = {1, 3, 5}
>>> even.isdisjoint(odd)

…… True
>>>

issuperset(set)
Python ●●●

>>> U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
>>> even = {2, 4, 6, 8, 10}
>>> U.issuperset(even)
….. True
>>>

issubset(set)
Python ●●●

>>> U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
>>> odd = {1, 3, 5, 7, 9}
>>> U.issubset(odd)
…… False
>>>
>>> odd.issubset(U)
…… True

Think about it ?
What is the difference between symmetric_difference(set) and

symmetric_difference_update(set)?

Note

*set has been used as a parameter in most of the examples above. The *
denotes that the method must take at least one set as an argument.

Other Set Methods

Method Description

len(iterable) Returns the number of elements in the set.

sum(iterable) Returns the sum of all elements in a set (works for
numeric values).

max(iterable) Returns the maximum value in a set (works if elements
are comparable).

min(iterable) Returns the minimum value in a set.

sorted(iterable) Returns a sorted list of set elements.

in Checks if an element exists in a set (item in set).

not in Checks if an element is not a member of the set.

len(set)

Python ●●●

>>> var = {2, 3, 5, 7}
>>> len(var)
….. 4

sum(set)
Python ●●●

>>> var = {5, 10, 15}
>>> sum(var)
…… 30

min(set) and max(set)
Python ●●●

>>> var = {2, 6, 3, 4}
>>> min(var)
…… 2
>>> max(var)
…… 6

sorted(set)
Python ●●●

>>> var = {2, 1, 4, 5, 3}
>>> sorted = sorted(var)
>>> print(sorted)
…… [1, 2, 3, 4, 5]

in and not in
Python ●●●

>>> var = {2, 4, 5, 6}
>>>3 in var
…… False
>>> 8 not in var
…… True

Decision Making Statements

Decision making is crucial in programming, especially when you want your
program to execute only when a certain condition is true or false. These
statements, known as conditional statements, are based on a Boolean value
(True or False). There are three different kinds of conditional statements:

① if Statement:

This is a simple conditional statement that executes a program or instructions
if a condition is true or false

Python ●●●
if condition:
 #code

For example,

A program to print “Hello World!” when an input number is greater than or
equal to 10.

Python ●●●

var = int(input("type any number: ")) #convert input to integer

if var >= 10:
 print("Hello World!")

#Output
type any number: 20
Hello World!

② if – else Statement:

The if-else conditional statement provides two options for program
execution. If the given condition is true, the program executes the statements
in the if block; otherwise, if the condition is false, the statements within the
else block execute.

Python ●●●

if condition:
 #code
else :
 #code

For example:

A program to print “Great Python”, if a variable is greater than 5, otherwise
print “Awesome Python”.

Python ●●●

var = int(input("type any number: ")) #convert input to integer

if var > 5:
 print("Great Python!")
else:
 print("Awesome Python!")

#Output
type any number: 8
Great Python!

Example 2,

A program that asks the user to input their age. If the age is below 18, it
prints 'You are underage, sorry you cannot vote'. Otherwise, it prints 'You
can vote'.

Python ●●●

age = int(input("How old are you?: "))

if age < 18:
 print("You are underage,\nSorry, you cannot vote")
else:
 print("You can vote")

#Output
How old are you?: 16
You are underage,
Sorry, you cannot vote

③ if – elif – else Statement:

This conditional statement is necessary for multiple decision making

Python ●●●

if condition1:
 #code

elif condition2:
 #code

elif condition3:
 #code
…….
…….
else :
 #code

For example:

A program to print “great Python!”, if a variable is equal to 5. If it is greater
than 5, print “awesome Python”; otherwise print ‘good Python’.

Python ●●●

var = 3
if var == 5:
 print("Great Python")

elif var < 5:
 print("Awesome Python")

else :
 print("Good Python")

#Output
Awesome Python

Example 2

A program that asks the user to input their scores in Accounting,
Mathematics, and English. It then calculates the average marks and assigns a
grade as follows: 'Failed' if the average is below 40, 'Pass' if the average is
between 40 and 59, and 'Excellent' if the average is 60 or above.

Python ●●●

english = float(input("English: "))
accounting = float(input("Accounting: "))
math = float(input("Math: "))

total = english + accounting + math

average = total/3

if average < 40:
 print(f"Average: {average} -> Failed!")

elif average >= 40 and average <= 59:
 print(f"Average: {average} -> Passed")

else:
 print(f"Average: {average} -> Excellent")

#Output
English: 48
Accounting: 67
Math: 52
Average: 55.666666666666664 -> Passed

Nested Conditional Statements

In programming or real-world scenarios, there are instances where an if
condition, when true, may require another if condition to be checked. In this

situation, an if statement is placed inside another if statement. A nested if
statement is, therefore, a structure where conditions are evaluated within
other conditions, creating complex decision-making logic.

Example 1,

A program that checks if a variable is in a list of numbers. If the number is
found, it determines whether it is even or odd and prints 'The number is even'
for even numbers and 'The number is odd' for odd numbers. Otherwise, it
prints 'The number cannot be found.'

Python ●●●

data = [2, 3, 5, 8, 10]
var = 5

if var in data :
 if var % 2 == 0 :
 print("The number is even")
 else:
 print("The number is odd ")

else:
 print("The number cannot be found")

#Output
The number is odd

Example 2

A program that asks the user to input their gender ('male' or 'female') and age.
If the person is male and their age is above 25, print 'You are a mature man';
otherwise, print 'You are a young man'. If the person is female, print 'You are
a beautiful woman'.

Python ●●●

gender = input("Gender: ")
age = int(input("Age: "))

if gender.lower() == "male" :
 if age > 25 :
 print("You are a mature man")
 else:
 print("You are a young man")

else:
 print("You are a beautiful woman")

#Output
Gender: male
Age: 30
You are a mature man

Loops

A loop is a control structure that enables the repetitive execution of a
statement or a group of statements. Loops are built around conditions,
steps, and statements. They continue executing as long as the condition
remains true. There are two main types of loop structures in Python: for
loops and while loops.

Needed for Loops:

✏Automate repetitive tasks
Loops are ideal for automating tasks that need to be repeated multiple times,
saving time and effort.

✏Handle large amounts of data
Loops are efficient for processing items in a list, dictionary, or any other data
structure.

✏Improving code readability
Reduces redundancy by eliminating the need for repeated statements.

✏Iterate over sequences
You can use loops to go through sequences like strings, lists, or ranges
without manually indexing each item.

✏Perform calculations or updates
Loops can be used to continuously calculate or update variables until a

specific condition is met.

✏Reduce human error
By automating repetitive tasks, loops minimize the chances of mistakes.

The for loop

The for loop is a control structure that allows the repetitive execution of
statements in a top-to-bottom approach. It is used to iterate over elements of
sequential data types such as lists, strings, or tuples.

Syntax:

for item in iterable:
 #code

Note
Iterable is an object capable of returning its members one at a time. It can

be traversed or looped over using for loops. Examples include list, tuple,
string, dictionary and set.

For example,

Python ●●●
var = "code"

for i in var:
 print(i)

#Output
c
o
d
e

Example2,

A program that calculates the sum of a list of numbers by iterating through
the list and adding each item.

Python ●●●
num = [1, 2, 3, 4]
total = 0

for i in num:
 total = total + i
 print(total)

#Output
1

3
6
10

Note

.Indentation is crucial in for and while loops ޡ

Every for or while statement must end with a ޡ
colon (:).

Range

Loop structures execute code based on user-given instructions, specifying
where to begin, end, and the steps. These instructions can be easily
implemented using the range() function.

The range(start, end, step) function is used to specify the range
of values and steps a control structure must follow to execute the
program. The start parameter is optional and denotes where to
begin the loop. It is set to 0 by default. The end parameter must
always be specified and denotes the integer to end the loop. The
step is also an optional parameter that specifies the interval of
execution. It is set to 1 by default.

For example,

range(end)

Python ●●●
for i in range(4): #end = 4
 print(i)
…..

#Output
0
1
2
3

range(start, end)

Python ●●●
for i in range(2, 6): #start = 2 , end = 4
 print(i)
…..

#Output

2
3
4
5

range(start, end, step)

Python ●●●
for i in range(0, 10, 2): #start = 0 , end = 10, step = 2
 print(i)
…..

#Output
0
2
4
6
8

The while loop

The while loop is another control structure used to iterate or repeatedly
execute a set of statements based on a true condition. The loop terminates
when the condition is no longer true.

Syntax

while condition:
 #code

For example,

Python ●●●
i = 0 #initial value set to 0
while i < 4: #repeat iteration until i >= 4 (condition becomes false
or no longer true)
…. i = i + 1 #increment i by one in each iteration
…. print(i)

#Output
1
2
3
4

Deep
To create an infinite loop, set the condition to always be True and terminate
with Ctrl + C.
Infinite loop:

while True:
 print(“Hello World!”)
…..

#output
Hello World!
Hello World!
Hello World!
….
….

Think about it ?

Did the loop run forever using the True condition? How true is that?
Infinite loops can gradually consume system resources, degrading
performance. You can interrupt the iteration using Ctrl + C.

The break statement

The break statement is a Python keyword used mostly in loop structures to
halt or terminate execution prematurely once a given condition is true.

For example,

Python ●●●
for i in range(1, 5):
 if i == 3: #terminate loop once i = 3
 break
 print(i)
…..

#Output
1
2

Example 2,
A program that continuously accepts numbers and computes their sum. The
program should terminate when the input is "=" and then display the final
result.

Python ●●●
total = 0

while True:

 num = input("type number: ")

 if num == "=":
 print(f"total = {total}")
 break
 else:
 total = total + float(num)

#Output
type number: 2
type number: 5
type number: =
total = 7

The continue statement

The continue statement is also a Python keyword implemented in loops to
skip a step or iteration when a particular condition is true.

For example,

Python ●●●
for i in range(1, 5):
 if i == 3: #skip step 3
 continue
 print(i)
…..

#Output
1
2
4

Example 2,
A program that prints all odd numbers from 1 to 10. If a number is even, the
program should skip it.

Python ●●●
i = 0

while i < 10:

 i = i +1
 if i % 2 == 0:
 continue
 print(f"{i} is odd number")

#Output
1 is odd number
3 is odd number
5 is odd number
7 is odd number
9 is odd number

Data Generation

Data and programs are the core components of any application or software,
making them essential resources in programming. Programs process data to
perform tasks, and data can either be provided by users or generated by the
system. Manually generating large datasets can be tedious, but programs can
automate this process by generating data in structured or unstructured
patterns.

In Python, loops, particularly for loops, are ideal for generating data
efficiently.

➡ List comprehension
Generating a list of squared numbers from 0 to 9

Python ●●●

data = [item**2 for item in range(10)]
print(data)

#Output
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Generating a list of odd numbers from 0 to 15

Python ●●●

data = [item for item in range(15) if item%2 != 0]
print(data)

#Output
[1, 3, 5, 7, 9, 11, 13]

Generating a matrix (list of lists) filled with random numbers

Python ●●●
import random
data = [[random.randrange(10) for _ in range(3)] for _ in range(5)]
print(data)

#Output
[[2, 2, 8], [0, 4, 9], [5, 2, 4], [0, 2, 6], [0, 0, 1]]

➡ Set comprehension
Generating a set of factorial numbers from 1 to 6

Python ●●●
import math
data = { math.factorial(x) for x in range(1, 7) }
print(data)

#Output
{1, 2, 6, 24, 120, 720}

Think about it ?

1. Can you generate a set of even numbers from 1 to 20?
2. Generate a set of prime numbers from 0 to 20.

➡ Dictionary comprehension

Generating a dictionary of numbers and their cubes (1 to 5)

Python ●●●

data = { x: x**3 for x in range(1, 6) }
print(data)

#Output
{1: 1, 2: 8, 3: 27, 4: 64, 5: 125}

➡ Generator expression
Generating a tuple of numbers multiplied by 3

Python ●●●

data = tuple(x*3 for x in range(10))
print(data)

#Output
(0, 3, 6, 9, 12, 15, 18, 21, 24, 27)

Function

A function is a block of organized and related statements used to perform a
specific task. It can contain variables, loops, decision-making statements,
other functions, statements, and objects that can be used repeatedly in
different parts of a program. Functions are also referred to as methods,
procedures, subprograms, routines, or subroutines.

Importance of Functions:

✏ Enhanced Readability and Comprehensibility:

Functions improve the readability and comprehensibility of a program by
breaking it down into smaller, logical units. Each function performs a
specific task, making the code easier to understand.

✏ Efficiency through Minimization of Repetitions:

Functions help minimize repetitions in code by encapsulating repetitive tasks
into reusable blocks. This reduces the amount of code duplication and makes
the program more efficient to maintain.

✏ Breaking Complex Programs into Smaller Segments:

Functions allow complex programs to be broken down into smaller and more
manageable segments. Each function focuses on a specific aspect of the
program's functionality, making it easier to develop and debug.

✏ Improved Time Efficiency:

By organizing code into functions, developers can optimize performance and
improve time efficiency. Functions enable code reuse, which reduces
development time and effort, leading to faster and more efficient
programming.

Types of Functions:

There are two types of functions in the Python programming language: Built-
in Functions and User-defined Functions.

Built-in Functions:

Built-in functions are provided by the Python language and are readily
available to be used in programs. They serve various purposes and are
commonly used for tasks such as mathematical operations, data conversion,
string manipulation, and more.

Examples include: sum(), eval(), hex(), bin(), oct(), chr(), ord(), dir(), del(),
max(), min() and len()

Example of using built-in functions

Python ●●●
>>> var = [2, 4, 6]
>>> total = sum(var)
>>> print(total)
…… 12
>>>

User-defined Functions:

User-defined functions are functions created by the user according to Python
syntax. These functions allow developers to encapsulate specific tasks or

operations into reusable blocks of code, enhancing code modularity and
reusability.

Syntax

def function_name(param):
 #statement

 return #statement

✏ The def Keyword:
The def keyword is used to define a function in Python. It is the keyword
used to create a function.

✏ Function Name:
The function name is the identifier given to the function. It can start with
either a capital or lowercase letter and can include underscores, but it cannot
start with a number.

✏ Parameters:
Parameters, also known as arguments, are optional and used to pass data or
values to the function. They are specified within the parentheses following
the function name.

✏ Colon:
A colon (:) marks the end of the function header, indicating the start of the
function block or body.

✏ Statement(s):
Every function block or body contains at least one statement, which defines
the actual logic or purpose of the function. These statements are executed
when the function is called.

✏ The return Statement:
The return keyword is optional and is used if the function is defined to return
or produce a value. If the function is designed to return no value, there is no
need to use the return statement.

Example 1: A function to print “Hello World!”

Python ●●●

def hello():
 print("Hello World!")

Example 2: A function to accept two numbers and return their sum

Python ●●●
def total(x, y):
 result = x + y

 return result

Calling Functions

Calling a function simply means executing the function. Function calls can
be made through the Python prompt, within another function, or within a
program.

① Executing a function call directly in the interpreter.

Python ●●●
>>> def greetings():
……. print("Hi\nGoodmorning")
…….
>>> greetings() #calling the greetings function
…… Hi
 Goodmorning
>>>

② Executing a function within a program.

Python ●●●
def myFun():
 var = 200
 return var

value = myFun() #calling the myFun function
print(value)

#Output
200

③ Invoking a function from within another function.

Python ●●●
def myFunc():
 num = 10
 return num

def price():
 myfun = myFunc() #calling the myFunc function within price()
 return myfun + 5

value = price() #calling the price function
print(value)

#Output
15

Argument Functions

Functions in Python can be designed to perform tasks automatically
using variables and other objects without requiring user interaction.
These types of functions do not take any parameters and are called
argumentless functions.

On the other hand, some functions require input data to operate,
either from the user or another function. These inputs, known as
parameters or arguments, can include numbers, strings, lists,
dictionaries, or even other functions. The function processes these
parameters during execution.

Unlike some other programming languages, Python does not require
specifying the data type of parameters. Instead, Python determines the type
dynamically based on the value assigned to them.

Syntax

def myFun(x, y):
 pass

Example,

Python ●●●
def average(x, y, z):
 total = x + y + z
 avg = total/3

 return avg

result = average(6, 8, 10) #x=6, y= 8, z= 10
print(result)

#Output
8.0

Optional Arguments

Some functions are designed to accept parameters, but they can still
function without them. These parameters are called optional
arguments because they are not required for the function to
execute successfully.

If a parameter is not optional, it must always be provided when
calling the function; otherwise, an error will occur. To make a
parameter optional, you assign it a default value. If the argument
is not supplied, the function will use the default value instead.

Syntax

def myFun(x= 0, z=None):
 pass

In this example, x has a default value of 0, and z is set to None, making them
optional parameters. If no value is passed for x or z, their default values will
be used.

Note

When defining a function with both required and optional parameters, the
required parameters must always come first, followed by the optional
parameters.
This ensures that Python correctly assigns values to the parameters when
the function is called.

def myFun(x, y=5): ✅ Correct

 print(x, y)

def myFun(x=0, y): ❌ Wrong

 print(x, y)

If optional parameters are placed before required ones, Python will not
know how to correctly assign values, leading to a syntax error.

Executing Argument Functions

When calling or executing functions with arguments, values can be passed in
two ways:

1. Positional Arguments – Values are supplied in the same order
as the function parameters.

2. Keyword Arguments – Parameters are explicitly assigned values
using their names, allowing flexibility in the order.

Python ●●●

def products(x, y):
 results = x * y
 return results

value1 = products(10, 2) #positional argument (x=10, y= 2)
value2 = products(y= 2, x= 10) #keyword arguments

print(value1)
print(value2)

#Output
20
20

Unlimited Arguments

In programming, there are situations where a function needs to accept a large
or unknown number of arguments. Defining each argument separately is
not practical, especially when the number of inputs varies.

To handle this efficiently, Python allows using * (asterisk)
notation before a parameter. This collects all passed arguments
into a tuple, enabling the function to accept multiple values
without explicitly defining them.

Key Points:

The * notation allows a function to accept an unlimited number of
arguments.

The collected arguments are stored as a tuple, which can be accessed
using indexing.

Arguments must be passed separated by commas inside the function
call.

Syntax

def myFun(*args):

 pass

Example,
A program to sum all passed arguments

Python ●●●
def total(*args):
 result = 0
 for item in args: #iterating through the args (contains the arguments)
 result = result + item

 return result

value = total(2, 5, 10, 3, 4) #calling the total function with multiple
arguments
print(value)

#Output
24

Understanding the pass Keyword

The pass keyword, as used in the function block above, is not limited to
functions alone—it can also be used in other code structures such as loops
and conditional statements.

It serves as a placeholder when a function, loop, or block of code
is defined but does not yet contain any statements. This is useful
when writing code that will be implemented later, preventing
syntax errors that would occur if the block were left empty.

A function or block cannot be left empty without using pass, as Python
requires at least one statement inside it.

Python ●●●
def total():
 pass

def greetings():
 return "Hello, Friend!"

Lambda Function

Python functions are normally defined with the def keyword, but
there is another way to create functions without using the def
keyword and a function name. This can be achieved using Python
Lambda functions.

Syntax

>>> variable = lambda arguments : expression

✏ Variable: This is the variable that will store the lambda function.
✏ Argument: These are the input values provided to the lambda function.
✏ Expression: This is the logic that defines the function.

Example 1 : Lambda function to add two numbers.

Python ●●●
>>> add = lambda x , y : x + y
>>> add(2, 5)
…… 7
>>>

Example 2 : Lambda function to return the square of a number.

Python ●●●
>>> square = lambda x : x ** 2

>>> square(4)
…… 16
>>>

Example 3 : Lambda function to check if a number is even.

Python ●●●
>>> even = lambda x : x % 2 == 0
>>> even(6)
…… True
>>>

Using map() and filter() with Lambda Functions

Lambda functions can be used to create new iterables by
transforming or filtering elements from an existing iterable. This is
achieved using the map() and filter() functions.

map() Function

The map() function applies a given function to each element of an iterable
and returns a new iterable with the modified values.

Syntax

new_iterable = type(map(lambda argument: expression, iterable))

Example 1,

Python ●●●

numbers = [1, 2, 3, 4]
squared = list(map(lambda x: x**2, numbers))
print(squared)

#Output
[1, 4, 9, 16]

Examples 2,

Python ●●●
import math

numbers = [3, 4, 5, 6]
factorial = set(map(lambda x: math.factorial(x), numbers))
print(factorial)

#Output
{6, 24, 120, 720}

filter() Function

The filter() function is used to select elements from an iterable based on a
given condition. It returns a new iterable containing only elements that satisfy
the condition.

Syntax

new_iterable = type(filter(lambda argument: condition, iterable))

Example 1,

Python ●●●

numbers = [1, 2, 3, 4, 5, 6]
evens = list(filter(lambda x: x%2 == 0, numbers))
print(evens)

#Output
[2, 4, 6]

Examples 2,

Python ●●●

numbers = [2, 3, 4, 5, 6, 7, 8, 9]
multiple_three = tuple(filter(lambda x: x%3==0, numbers))
print(multiple_three)

#Output
(3, 6, 9)

Multiprocessing

Multiprocessing refers to the execution of multiple functions or processes
simultaneously. In programming, functions are typically executed
sequentially in a linear manner, following a first-come, first-served basis.
This means that the function called first is executed before any subsequent
functions. Execution progresses from the top of the program to the bottom,
and any function waiting to execute must remain idle until the currently
running function completes. This happens because execution occurs within
the system’s single thread by default.

Drawbacks of Sequential Execution:

It is inefficient for tasks that require real-time processing or produce
crucial results needed for subsequent operations.
It slows down performance, especially when dealing with CPU-
intensive tasks.
It prevents full utilization of multi-core processors, as only a single
core is used at a time.
Functions that take longer to execute can block the execution of other
functions, causing delays.

Python ●●●

import time

def first():
 time.sleep(5) #delay execution for 5 seconds
 print("First Function")

def second():

 print("Second Function")

first() #calling the first() function
second() #calling the second() function

#Output
First Function
Second Function

In the example above, second() runs only after first() has finished
executing. This demonstrates a performance issue, as subsequent
functions must wait for the previous ones to complete, leading to
potential delays and inefficiencies.

To overcome these limitations, functions or processes can be
executed concurrently on different threads, allowing multiple tasks
to run simultaneously. This is made possible using threading for
lightweight concurrent execution and multiprocessing for parallel
execution across multiple CPU cores.

Threading

Threading allows multiple functions or processes to execute
simultaneously without waiting for the completion of another
process before starting. This improves performance by enabling
parallel execution. In Python, the threading module provides
various methods for managing and working with threads.

Threading Methods

Function Description

Thread() Creates a thread

active_count() Returns the currently executing thread object.

current_thread() Returns a list of all active Thread objects.

enumerate() Returns a list of all active Thread objects.

excepthook() Used to handle uncaught exceptions in threads.

get_ident() Returns the thread identifier (a unique integer for each
thread).

get_native_id() Returns the native (OS-level) thread identifier.

getprofile() Retrieves the profiling function for the current thread.

gettrace() Returns the trace function for the current thread.

local() Creates thread-local data storage. Each thread maintains
its own separate copy.

main_thread() Returns the main thread object.

setprofile() Used to set a profiling function for threads.

settrace() Sets a trace function for debugging threads.

stack_size() Returns the stack size used when creating new threads.

Thread(target, name, args, kwargs, daemon, group)

target → Specifies the function that the thread will execute when
started. If None, no function runs, and the thread does
nothing.

name → A string representing the thread’s name. If None, a default
name like "Thread-1", "Thread-2", etc., is assigned.

args → A tuple containing arguments to pass to the target function.
If the function requires multiple arguments, they must be
passed as a tuple.

kwargs → A dictionary containing keyword arguments (key=value
pairs) for the target function.

daemon → Determines whether the thread is a daemon thread (runs in
the background and stops when the main program exits). If
None, it inherits the main thread’s daemon status.

group → Reserved for future implementation. Always set to None.

Python ●●●

import time
import threading

def first():
 time.sleep(5)
 print("First Function")

def second():
 print("Second Function")

def third(x, y):
 print(x + y)

#creating threads

thread1 = threading.Thread(target = first)
thread2 = threading.Thread(target = second, name = "second_thread")
thread3 = threading.Thread(target = third, args = (10, 20), daemon= True)

Thread Object Methods

start() Starts the execution of the thread.

daemon A boolean attribute that determines whether a thread is a
daemon thread. Daemon threads run in the background and
automatically terminate when the main program exits.

name() Retrieves or sets the thread’s name.

indent() Returns the thread’s unique identifier (assigned by Python).

is_alive() Returns True if the thread is still running, False otherwise.

join() Waits for the thread to finish execution before continuing.

native_id() Returns the OS-assigned native thread ID.

run() Defines the code that runs when the thread starts. Typically,
you override this method when creating a custom thread class.

Example1

Python ●●●

import time
import threading

def worker1():
 time.sleep(5)
 print("First Function")

def worker2(x, y):
 value = x + y
 print(f"Sum: { value }")

#creating threads

thread1 = threading.Thread(target = worker1)
thread2 = threading.Thread(target = worker2, args = (10, 20))

#running the threads
thread1.start()
thread2.start()

#Output
Sum: 30
First Function

Example2

Python ●●●
import threading
import time

def worker():
 time.sleep(2)
 print("Thread is running")

#creating thread
thread = threading.Thread(target = worker)

thread.daemon = True
thread.start()

#wait until thread finish executing
thread.join()

name = thread.name
status = thread.is_alive()

print(f"Name: {name}")
print(f"Status: {status}")

#Output
Thread is running
Name: Thread-1 (worker)
Status: False

active_count()

Python ●●●

import threading
import time

def worker():
 time.sleep(2)
 print("Thread is running")

threading.Thread(target = worker).start()
print(threading.active_count())

#Output
2
Thread is running

current_thread()
Python ●●●

threading.Thread(target = worker).start()
print(threading.current_thread())

#Output
<_MainThread(MainThread, started 17988)>
Thread is running

stack_size()
Python ●●●

threading.Thread(target = worker).start()
print(threading.stack_size())

#Output
0
Thread is running

Class and Object

Python is a multi-paradigm language, but it is primarily object-
oriented (OOP), meaning everything in Python is an object.
Objects in Python can include fundamental data types such as
integers, floats, strings, lists, dictionaries, functions, and even
modules.

Classes and Objects

A class is a blueprint or template for creating objects. It is a user-
defined data type, similar to built-in types like list, dict, str, float,
and int.
An object is a specific instance of a class. When a class is defined,
no memory is allocated until an object is created. Objects store data
and behavior defined by their class.

Attributes and Methods
Classes contain two main components:

1. Attributes (Instance Variables) – These are variables that hold
data specific to each object.

2. Methods – These are functions defined inside a class that operate
on the object’s attributes and define its behavior.

Example:

Python ●●●

class MyClass: #class name
 num = 10 #class attribute (variable)

 name = ”Bob”

 def greetings(): #class method (function)
 value = "Hello World!"
 return value

Key Points

.Classes define the structure and behavior of objects ޡ
Objects are created from classes and hold specific data and ޡ
functionality.
.Methods (functions inside classes) define the behavior of objects ޡ
.Instance variables store object-specific data ޡ

Deep

Similar to functions, class names can contain both letters and numbers.
However, they must begin with a letter if they include both. Class names
can start with either an uppercase or lowercase letter, but by convention,
Python follows PascalCase (e.g., MyClass, StudentRecord).

Creating Object

Objects are created by assigning a class to a variable. The variable then

becomes an instance (or object) of the class. This means the object inherits
the class's attributes and methods, allowing it to access and manipulate them
independently.

Syntax

class MyClass:
 num = 10

 def greetings():
 return "Helloo"

myobject = MyClass #instantiating the class

Accessing Methods and Attributes of a Class
Methods and attributes of a class can be accessed using the instance or object
of the class.

Syntax
var = myobject.num
hello = myobject.greetings()

Example 1

Python ●●●

class StudentRecords:

 school = "Harvard"
 school_ID = 5879

 def student(input):
 data = {'name':"George Wood", 'age': 25, 'index':3056,
'course':"Computer Science"}

 value = data.get(input)
 return value

#creating object of the class StudentRecords
obj = StudentRecords

#Accessing attributes
sch = obj.school

#Accessing method
name = obj.student("name")
age = obj.student("age")
course = obj.student("course")

print(f"School: {sch}")
print(f"Name: {name}")

print(f"Age: {age}")
print(f"Course: {course}")

#Output
School: Harvard
Name: George Wood
Age: 25
Course: Computer Science

Example 2,

Python ●●●
import math

class Calculation:

 greetings = "Hello\nThis is a calculation class. Just crack the
numbers!...."

 def sum(*input):
 value = 0
 for i in input:
 value = value + i
 return value

 def factorial(input):
 value = math.factorial(input)
 return value

#creating object of the class Calculation

cal = Calculation
greet = cal.greetings
total = cal.sum(10, 20, 5)
factor = cal.factorial(6)

print(f"Greetings: {greet}")
print(f"Total: {total}")
print(f"Factorial: {factor}")

#Output
Greetings: Hello
This is a calculation class. Just crack the numbers!.....
Total: 35
Factorial: 720

The __init__ Method

In Python, the __init__() method serves as a constructor, used to initialize
objects, variables, and methods within a class. When an instance of a class is
created, the __init__() method is automatically executed.

This approach is similar to other programming languages like C, C++, Dart,
and Java, which use a main() function to initiate execution. However, unlike
main(), __init__() is specific to object instantiation.

Accessing Class Attributes in Methods

By default, methods cannot directly access attributes declared at the class
level. To ensure that attributes are accessible across methods and instances,
they must be assigned using the self keyword inside __init__().

Understanding self

The self keyword represents the instance of the class, allowing access
to attributes and methods within the class.

Attributes prefixed with self become instance attributes, meaning
they can be accessed and modified by any method within the class.

Attributes without self are considered class attributes (shared across
all instances) or private attributes if prefixed with double underscores
(__).

Public and Private Attributes

Public attributes: Declared using self.attribute_name, making them
accessible within and outside the class.

Private attributes: Defined with double underscores
(__attribute_name), restricting access from outside the class.

Public and Private Methods

Public methods: Defined with self as the first parameter (e.g., def
my_method(self):).

Private methods: Prefixed with double underscores (e.g., def
__my_method(self):), making them inaccessible outside the class

For example,

Python ●●●

class Geometry:

 def __init__(self):
 self.pi = 3.14

 def area_circle(self , radius):
 area = pow(radius, 2) * self.pi
 return area

 def area_square(self , size):
 area = size *size
 return area

 def area_rectangle(self , width, height):
 area = width * height
 return area

geo = Geometry()
pi = geo.pi
circle = geo.area_circle(7)
square = geo.area_square(12)
rec = geo.area_rectangle(4, 6)

print(f"pi = {pi}")
print(f"Area of a circle : {circle}")
print(f"Area of a square: {square}")
print(f"Area of a rectangle: {rec}")

#Output
pi = 3.14
Area of a circle : 153.86
Area of a square: 144
Area of a rectangle: 24

Deep
In Python, instantiating a class with or without the __init__() constructor
behaves differently.

1. Without __init__()
When a class does not have an __init__() method, an instance can be
created simply by referencing the class name:

class MyClass:
 pass

#Instantiating
object = MyClass

2. With __init__()
When a class has an __init__() constructor, it must be instantiated with
parentheses:

class MyClass:
 def __init__(self):
 print("instance")

#Instantiating
object = MyClass()

Argument Class

In Python, arguments can be passed to a class in the same way they are
passed to functions. These arguments are processed by the __init__()
constructor, allowing the class to initialize instance attributes that can be used
by methods and objects.

The __init__() method takes self as its first parameter, followed by any
additional arguments:

def __init__(self, arg1, arg2, ….):
 self.arg1 = arg1
 self.arg2 = arg2

The arguments are assigned to instance attributes using self, making them
accessible within the class.

These arguments must be provided when instantiating the class:

obj = MyClass(value1, value2)

For example,

Python ●●●

class Statistic:

 def __init__(self, scores):
 self.scores = scores
 self.average = self.average()

 print("average: { self.average }")

 def average(self):
 total = sum(self.scores)
 length = len(self.scores)

 print("total: { total }")
 avg = total/length
 return avg

data = [65, 30, 84, 72]
stat = Statistic(data)

#Output
total: 251
average: 62.75

Running a Class

In Python, a class can be used in different ways within a program. Generally,
classes are instantiated by creating objects, but in some cases, they can be
executed without explicitly creating an object.

① Instantiating a Class

Normally, to use a class, you create an instance (object) of it:

Python ●●●
class Greet:

 print("Hello,\nGood day Buddy")

Creating an object and calling a method
obj = Greet

#Output
Hello,
Good day Buddy

② Running a Class Without Instantiation

In Python, a class can contain class-level methods that can be called without
creating an object.

Python ●●●
class Greet:

 print("Hello,\nGood day Buddy")

Calling the method without an instance
Greet

#Output
Hello,
Good day Buddy

③ Using if __name__ == "__main__":

This approach ensures that the class runs only when the script is executed
directly, and not when imported as a module.

Python ●●●
class Greet:

 print("Hello,\nGood day Buddy")

if __name__ == "__main__":
 obj = Greet

#Output
Hello,
Good day Buddy

Creating a Module (Library) from a Class

In Python, modules are reusable code files that contain classes, functions, and
variables. These modules can be imported into other programs using the
import statement, allowing developers to reuse functionality without
rewriting code. Python comes with several built-in modules, which are stored
in the installation directory. However, developers can also create custom
modules and save them in the working directory for reuse.

Using modules enhances code reusability, modularity, maintainability,
and debugging efficiency, ultimately improving programming speed and
reducing errors.

Steps to Create a Module from a Class

1. Create a new Python file and name it your_file.py. Save it in the
working directory.

2. Define a class inside the file and implement its methods and
attributes.

3. Open another Python file where you want to use the module.

4. Import the module using one of the following methods:

Method 1: Importing the Entire Module

import module

obj = module.class_name()

Example,

#myprogram.py
Python ●●●

import sample

add = sample.MyMath.addition(6,
2)
avg = sample.MyMath.average([4,
2, 8])

name = sample.MyProfile.name
edu =
sample.MyProfile.education()

course = edu.get("course")

print(add)
print(avg)
print(name)
print(course)

#sample.py
Python ●●●

class MyMath:

 def addition(x, y):
 return x + y

 def average(input):
 total = sum(input)
 length = len(input)
 return total/length

class MyProfile:

 name = "George Wood"

 def education():
 map =
{'college':"Cambridge",
 'year':2,
 'course':"Computer
Science"}

#Output
8
4.666666666666667
George Wood
Computer Science

 return map

Method 2: Importing the Class Directly

from module import class_name

obj = class_name()

Example,

#myprogram.py
Python ●●●

from sample import MyMath,
MyProfile

add = MyMath.addition(10, 5)
avg = MyMath.average([3, 5, 2])

name = MyProfile.name
edu = MyProfile.education()

college = edu.get("college")

print(add)
print(avg)
print(name)
print(college)

#Output
15
3.3333333333333335
George Wood
Cambridge

#sample.py
Python ●●●

class MyMath:

 def addition(x, y):
 return x + y

 def average(input):
 total = sum(input)
 length = len(input)
 return total/length

class MyProfile:

 name = "George Wood"

 def education():
 map =
{'college':"Cambridge",
 'year':2,
 'course':"Computer
Science"}

 return map

Random Module

The random module is one of Python’s most widely used libraries,
particularly in areas such as game development, simulations, cryptography,
and statistical modeling. It allows for the generation of random numbers and
the selection of elements in a non-linear or unsequential manner.

Random Methods

Function Description

random.random() Returns a random floating-point
number between 0.0 and 1.0.

random.choice(iterable) Randomly selects a single element
from a sequence (list, tuple, string,
etc.).

random.choices(iterable) Returns a list of k randomly selected
elements from a sequence, with
optional weights for probability
control.

random.randint(a, b) Returns a random integer between a
and b (both inclusive).

random.randrange(start, end) Returns a random integer within a
range, similar to range().

random.shuffle(iterable) Randomly rearranges the elements of
a mutable sequence.

random.uniform(a, b) Returns a random float in the range

[a, b].

random.triangular(low,high, mode) Returns a random float from a
Triangular distribution.

random.sample(population, k) Returns a unique list of k elements
randomly selected from the
population.

random.seed() Initializes the random number
generator with a seed to produce
repeatable results.

random.randbytes(n) Returns a bytes object with n random
bytes.

random.getstate() Returns the current internal state of
the random number generator.

random.setstate(state) Restores the random number
generator state to a previously saved
state.

random.betavariate(alpha,beta) Returns a random float from a Beta
distribution with parameters alpha
and beta.

random.binomialvariate(n, p) Returns a random number based on a
Binomial distribution, where n is the
number of trials and p is the
probability of success in each trial.

random.expovariate(lambda) Returns a random number from an

Exponential distribution with a given
lambda (λ), which determines the rate
of decay.

random.gammavariate(alpha,beta) Returns a random number based on a
Gamma distribution with shape alpha
and scale beta.

random.gauss(mu, sigma) Generates a random number from a
Gaussian (Normal) distribution with
mean mu and standard deviation
sigma.

random.getrandbits(k) Returns a random integer represented
by k random bits.

random.lognormvariate(mu,sigma) Generates a number from a Log-
normal distribution, where mu and
sigma determine the shape.

random.normalvariate(mu,sigma) Returns a random number based on a
Normal (Gaussian) distribution.

random.paretovariate(alpha) Generates a random number
following a Pareto distribution with a
shape parameter alpha.

random.vonmisesvariate(mu,kappa) Generates a random number from a
Von Mises distribution (used in
circular data analysis).

random.weibullvariate(alpha,beta) Returns a random number based on a
Weibull distribution, which is

commonly used in reliability
engineering.

random()
Python ●●●

import random

>>> random.random()
….. 0.43203036719075705
>>> random.random()
….. 0.44621094293757324

randint(a, b)
Python ●●●

import random

>>> random.randint(2, 6)
…… 3
>>> random.randint(2, 6)
…… 5
>>> random.randint(10, 20)
…… 12
>>> random.randint(10, 20)
…… 18

randrange(start, stop, step)
Python ●●●

import random
>>> random.randrange(5) # start = 0, end = 5
…… 4
>>> random.randint(100, 200) # start = 100, end = 200
…… 120
>>> random.randint(2, 10, 3) # start = 2, end = 10, steps = 3
……. 8

choice(iterable)
Python ●●●

import random

>>> fruits = ["apple", "berry", "orange", "grape"]

>>> random.choice(fruits)
…… 'grape'
>>> random.choice(fruits)
…… 'orange'

>>> even = [2, 4, 6, 8, 10]
>>> random.choice(even)
…… 6

choices(iterable)
Python ●●●

import random

>>> fruits = ["apple", "berry", "orange", "grape"]

>>> random.choices(fruits)
…… ['berry']

gauss(mu, sigma)
Python ●●●

import random
>>> random.gauss()
…… -0.01385969404444731

sample(iterable, k)
Python ●●●

import random

>>> fruits = ["apple","berry","orange", "grape"]

>>> random.sample(fruits, 2)
….. ['orange', 'apple']

>>> random.sample(fruits, 3)
…… ['berry', 'apple', 'grape']

uniform(a, b)
Python ●●●

import random

>>> random.uniform(2, 10)
…… 9.291435998100061

>>> random.uniform(2, 10)
…… 7.6744910036199325

Deep

The Guess Game

The Guess Game is an interactive game where the user inputs a number
within a specified range. If the entered number matches the randomly
generated number by the program, the user wins. Otherwise, they must
continue guessing until they find the correct number. However, the game
can be terminated at any time by entering a non-digit character.

def getRandomNumber():
 value = random.randint(0, 10)
 return value

while True:
 getInput = input("Guess a number 0-10: ")

 if getInput.isalpha:
 print("Input is not a number\nGame Over")
 break
 else:
 value = getRandomNumber()
 if value == int(getInput):
 print("You've won!\nCongratulations")
 break
 else:
 print("Wrong!\nGuess again")

#Output
Guess a number 0-10: 5
Wrong!
Guess again

Guess a number 0-10: 3
Wrong!
Guess again

Guess a number 0-10: 8
You've won!
Congratulations

Calendar Module

The calendar module is essential for working with dates and time in a
system. It allows you to display the calendar for any given year, past or
future. Additionally, it provides various methods for checking leap years,
retrieving the number of days in a month, and working with months and
weekdays.

Calendar Methods

Function Description

calendar.calendar() The main module used for handling
date-related functionalities.

calendar.datetime() A separate module in Python that
works with date and time objects.

calendar.day_abbr() A list of abbreviated weekday names
(e.g., ['Mon', 'Tue', 'Wed', ...]).

calendar.day_name() A list of full weekday names (e.g.,
['Monday', 'Tuesday', ...]).

calendar.different_locale Returns the current setting for the first
day of the week (default is Monday).

calendar.firstweekday() Sets the first day of the week (e.g.,
setfirstweekday(calendar.SUNDAY)).

calendar.format(formatstring) Used for formatting calendar outputs.

calendar.formatstring A string pattern used for formatting
calendar output.

calendar.global_enum Internal attribute related to global
enumeration.

calendar.isleap(year) Checks if a given year is a leap year
(returns True or False).

calendar.leapdays(y1, y2) Returns the number of leap years
between two years (exclusive).

calendar.main() Runs a demo of the calendar module
when executed as a script.

calendar.mdays A list where the index represents a
month (1-12), and the value is the
number of days in that month.

calendar.month(year, month) Returns a string representation of a
month's calendar.

calendar.month_abbr A list of abbreviated month names
(e.g., ['', 'Jan', 'Feb', 'Mar', ...]).

calendar.month_name month_name: A list of full month
names (e.g., ['', 'January', 'February',
...]).

calendar.monthcalendar(yr, m) Returns a list of weeks for the
specified month. Each week is a list of
seven integers, where 0 represents
days outside the month.

calendar.monthrange(year, month) Returns a tuple (start_day, num_days),
where start_day is the weekday index
of the first day of the month, and

num_days is the total number of days
in that month.

calendar.prcal(year,w, l, c) Prints a formatted calendar for a full
year.

calendar.prmonth(yr, m, w, l) Prints a formatted calendar for a
single month.

calendar.prweek(week,w,l) Prints a formatted representation of a
single week.

calendar.repeat(year, count) Repeats the year’s calendar count
times.

calendar.setfirstweekday(weekday) Sets the first day of the week (e.g.,
setfirstweekday(calendar.SUNDAY)).

calendar.timegm(tuple) Converts a time tuple (like one
returned by time.gmtime()) into a
Unix timestamp (seconds since
epoch).

calendar.week(yr, week, firstweek) Returns a list of (year, month, day)
tuples for each day in a given week
number.

calendar.weekday(year,
month,day)

Returns the weekday index for a given
date (Monday = 0, Sunday = 6).

weekheader Returns a header string with
abbreviated weekday names up to n
characters per name.

calendar(theyear = int, w = int , l=int, c=int, m=int)
Python ●●●

import calendar

cal = calendar.calendar(theyear=2025)
print(cal)

#Output
2025

 January
Mo Tu We Th Fr
Sa Su
 1 2 3
4 5
 6 7 8 9 10
11 12
13 14 15 16 17
18 19
20 21 22 23 24
25 26
27 28 29 30 31

 February
Mo Tu We Th
Fr Sa Su
 1 2
 3 4 5 6 7
8 9
10 11 12 13 14
15 16
17 18 19 20 21
22 23
24 25 26 27 28

 March
Mo Tu We Th
Fr Sa Su
 1 2
 3 4 5 6 7
8 9
10 11 12 13 14
15 16
17 18 19 20 21
22 23
24 25 26 27 28
29 30
31

 April
Mo Tu We Th
Fr Sa Su
 1 2 3 4
5 6
 7 8 9 10 11
12 13
14 15 16 17 18
19 20
21 22 23 24 25
26 27
28 29 30

…….

isleap(year)
Python ●●●

import calendar

>>> calendar.isleap(2024)
….. True
>>> calendar.isleap(2025)
…… False

leapdays(y1, y2)
Python ●●●

import calendar

>>> calendar.leapdays(2014, 2025)
…… 3

month(month, year)
Python ●●●

import calendar

>>> calendar.month(2025, 1)
…..
 January 2025
Mo Tu We Th Fr Sa Su
 1 2 3 4 5
 6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

leapdays(y1, y2)
Python ●●●

import calendar

>>> calendar.leapdays(2014, 2025)
…… 3

monthrange(year, month)
Python ●●●

import calendar

>>> calendar.monthrange(2025, 2)
…… (calendar.SATURDAY, 28)

prmonth(year, month, w, l)
Python ●●●

import calendar

>>> calendar.prmonth(2025, 4)
……
 April 2025
Mo Tu We Th Fr Sa Su
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

Datetime Module

The datetime module in Python is used to work with dates and times based

on the system’s current settings. It provides several methods for handling
months, years, time zones, and formatting date-time values.

Datetime Methods

Function Description

astimezone Converts the given datetime object to the
specified time zone (tz). It is useful for handling
time zones when working with global
applications.

combine(date, time) Combines a date object and a time object into a
single datetime object.

ctime Returns a string representation of the date-time
in a human-readable format.

date Extracts and returns the date portion from a
datetime object.

day Returns the day of the month as an integer (1-
31).

dst Returns the daylight saving time (DST) offset
for time zones that observe DST.

fold Used when dealing with ambiguous times in
time zones that observe DST transitions.

fromisocalendar(yr,wk,d) Converts an ISO calendar (year, week number,
weekday) into a datetime object.

fromisoformat Converts an ISO 8601 formatted string into a

datetime object.

fromordinal(ordinal) Converts a Gregorian ordinal (days since 01-01-
0001) into a date object.

fromtimestamp Converts a timestamp (seconds since epoch)
into a datetime object.

hour Returns the hour of the day (0-23).

isocalendar Returns a tuple representing the year, week
number, and weekday.

isoformat Returns an ISO 8601 formatted string of the
datetime object.

isoweekday Returns the weekday as an integer (1=Monday,
7=Sunday).

max, min datetime.max → The maximum representable
date-time (9999-12-31 23:59:59.999999).
datetime.min → The minimum representable
date-time (0001-01-01 00:00:00).

microsecond Returns the microsecond component of the
datetime object (0-999999).

minute Returns the minute of the hour (0-59).

month Returns the month of the year (1-12).

now Returns the current local date-time. If a time
zone (tz) is provided, it returns the date-time in
that time zone.

replace Returns a new datetime object with modified
values.

resolution Returns the smallest time unit (datetime can
measure microseconds).

second Returns the second component (0-59).

strftime(format) Converts a datetime object into a formatted
string.

strptime(string, format) Parses a string and converts it into a datetime
object based on the given format.

time() Extracts the time portion from a datetime
object.

timestamp() Returns the timestamp (seconds since epoch)
for a datetime object.

timetuple() Returns a time.struct_time object representing
the date-time.

timetz() Extracts the time and time zone from a datetime
object.

today() Returns the current local date.

toordinal() Converts the datetime object to a Gregorian
ordinal (days since 01-01-0001).

tzinfo() Returns information about the time zone of the
datetime object.

tzname() Returns information about the time zone of the
datetime object.

utcfromtimestamp() Converts a timestamp into a UTC datetime
object.

utcnow() Returns the current UTC date-time.

utcoffset() Returns the time zone offset from UTC.

utctimetuple() Converts a datetime object to a UTC
time.struct_time.

weekday() Returns the day of the week (0=Monday,
6=Sunday).

year Returns the year as integer

now()
Python ●●●

from datetime import datetime

>>> datetime.now()
…… datetime.datetime(2025, 3, 31, 15, 13, 4, 726455) #current date and
time

day , month, weekday() and year

Python ●●●
from datetime import datetime

>>> datetime.now()
…… datetime.datetime(2025, 3, 31, 15, 13, 4, 726455) #year, month, day,
hour, min, sec

>>> datetime.now().day
…… 31

>>> datetime.now().month
…… 3 #March

>>> datetime.now().weekday()
…… 0 #March

>>> datetime.now().year
…… 2025

hour, minute, second and microsecond
Python ●●●

from datetime import datetime

>>> date = datetime.now()
>>> print(date)
…… datetime.datetime(2025, 3, 31, 15, 13, 4, 726455) #year, month, day,
hour, min, sec

>>> datetime.now().hour
…… 15

>>> datetime.now().minute
…… 13

>>> datetime.now().second
…… 4

>>> datetime.now().microsecond
…… 726455

today()
Python ●●●

from datetime import datetime

>>> today = datetime.now().today()
>>> print(today)
…… datetime.datetime(2025, 3, 31, 15, 41, 58, 492555) #year, month,
day, hour, min, sec

time()
Python ●●●

from datetime import datetime

>>> time = datetime.now().time()
>>> print(time)
…… datetime.time(15, 43, 45, 989477) #hour, minute, second,
microsecond

strftime(format)

Format Description Example

%Y Four-digit year 2025

%y Two-digit year 25 (for 2025)

%m Month 01 to 12

%B Full month name March

%b / %h Abbreviated month name Mar

%d Day of the month 01 to 31

%j Day of the year 001 to 366

%H Hour (24 hour format) 00 to 23

%I Hour (12 hour format) 01 to 12

%p AM/PM notation AM or PM

%M Minutes 00 to 59

%S Seconds 00 to 59

%f Microseconds 000000 to 999999

%z UTC offset +0000, -0400

%Z Timezone name UTC, EST, IST

%A Full weekday name Monday

%a Abbreviated weekday name Mon

%w Weekday as a number (Sun =0, Mon
=1)

0 to 6

%W Week number of the year (Monday
start)

00 to 53

%U Week number of the year (Sunday 00 to 53

start)

%c Full date and time representation Sat Mar 31 14:30:45
2025

%x Date representation 03/31/2025

%X Time representation 14:3045

Table 11.0: Datetime string format

Python ●●●
from datetime import datetime

>>> today = datetime.now()
>>> print(today)
…… datetime.datetime(2025, 3, 31, 20, 54, 35, 345904)

>>> today.strftime("%d - %m - %Y") #date
…… '31 - 03 - 2025'

>>> today.strftime("%d %B, %Y") #date
…… '31 March, 2025'

>>> today.strftime("%d %B, %Y %H: %M:%S ") #date and time
…… '31 March, 2025 21:01:26'

>>> today.strftime("%c ") #date and time
…… 'Mon Mar 31 21:01:26 2025'

OS (Operating System) Module

The OS module is a crucial library in Python programming as it provides
direct access to the underlying operating system. It allows users to create,
rename, manage system resources, and retrieve system information. Its
functionalities are broadly categorized into the following groups:

✏File and Directory Management
Handling file creation, deletion, and renaming.

✏ Process Management
Managing system processes and execution.

✏ System Information Retrieval
Fetching system details such as OS type, environment variables, and user
information.

✏ Path and Directory Navigation
Working with file paths, directories, and symbolic links.

✏ Permissions and Security
Managing file access permissions and inheritance.

OS Methods

① File and Directory Management

Function Description

mkdir Creates a directory.

makedirs Creates a directory along with any necessary parent
directories.

rmdir Removes an empty directory.

removedirs Removes multiple nested directories.

rename Renames a file or directory.

renames Renames a file, creating any needed intermediate
directories.

replace Replaces a file or directory.

remove Deletes a file.

unlink Alias for remove(), used to delete a file.

listdir Lists files and directories in a specified path.

scandir Returns an iterator for directory entries.

walk Generates file names in a directory tree.

mkdir(path)
Python ●●●

import os

>>> os.mkdir("mydir")
>>> os.mkdir("music")
>>> os.listdir() #listing all the directories

…… ['music', 'mydir']

makedirs(path)
Python ●●●

import os

>>> os.makedirs("media/music/reggae")

rename(src, dst)
Python ●●●

import os

>>> os.listdir()
…… ['mydir', 'music']

>>> os.rename("mydir", "document") #rename mydir to document
>>> os.listdir()
…… ['document', 'music']

renames(old , new)
Python ●●●

import os

>>> os.renames("media/music/reggae", "media/song/cools")

remove(path) and unlink(path)
Python ●●●

>>> os.remove("document")
>>> os.unlink("mydir")

replace(src, dst)

Python ●●●
>>> os.replace("document", "doc")
>>>

scandir()
Python ●●●

import os

>>> files = os.scandir()
>>> for items in files:
…… print(items)
……
…… <DirEntry 'music'>
 <DirEntry 'mydir'>
 <DirEntry 'pictures'>

walk(path, topdown)
Python ●●●

import os

>>> for dirs in os.walk("Media"):
…… print(dirs)
……
…… ('Media\\Music', ['Reggae'], [])
 ('Media\\Music\\Reggae', [], [])
 ('Media\\Pictures', ['Nature'], [])
 ('Media\\Pictures\\Nature', [], [])

② Process Management

Function Description

abort Immediately terminates the process.

kill Sends a signal to terminate a process by its
PID.

waitpid Waits for a child process to terminate.

system Executes a command in the system shell.

spawnl, spawnle, spawnv,
spawnve

Starts a new process.

execl, execle, execlp, execlpe,
execv, execve, execvp,
execvpe

Replaces the current process with a new
one.

popen Opens a pipe to a command.

system(cmd)
Python ●●●

import os

>>> results = os.system("python --version")
>>> print(results)
…… Python 3.13.0

>>> ip_address = os.system("ipconfig/all")
>>> print(ip_address)

…… Windows IP Configuration
 Host Name : AsieduPC
 Primary Dns Suffix :
 Node Type : Mixed
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No

 Ethernet adapter Ethernet:

Note
os.system() requires native OS commands, which are specific to the
operating system platform. The examples above use Windows OS
commands, which differ from those used in Linux or macOS.

getpid() and kill(pid)
Python ●●●

import os

>>> results = os.getpid()
>>> print(results)
…… 12568 #current process ID

>>> os.kill(pid=12568) #terminating process with pid:12568
>>>

spawnl, spawnle, spawnv, and spanwve()
Python ●●●

import os

Launching Notepad (Windows example)
>>> os.spawnl(os.P_NOWAIT, "C:\\Windows\\System32\\notepad.exe",
"notepad.exe")

③ System Information

Function Description

getcwd Returns the current working directory.

getcwdb Returns the current working directory as bytes.

getpid Returns the process ID of the current process.

getppid Returns the parent process ID.

getlogin Returns the username of the logged-in user.

uname_result Retrieves system-related information like OS name and
version.

environ Returns environment variables.

getenv Fetches the value of an environment variable.

putenv Sets an environment variable.

unsetenv Removes an environment variable.

getcwd()
Python ●●●

>>> import os
>>> os.getcwd()
……
 'D:\\Project\\Python\\mydir'

getpid()
Python ●●●

>>> import os
>>> os.getpid()
…… 12568

getlogin()

Python ●●●
>>> import os
>>> os.getlogin()
…… ''John''

getenv(key)

Python ●●●
>>> import os
>>> os.getenv("JAVA_HOME")
…… 'C:\\Program Files\\Java\\jdk-21'

putenv(name, value)

Python ●●●
>>> import os
>>>
os.putenv("JAVA_HOME",
"C:\\Program Files\\Java\\jdk-
21")

environ

Python ●●●
>>> os.environ
……
environ({'ALLUSERSPROFILE':
'C:\\ProgramData', 'APPDATA':
'C:\\Users\\Asiedu\\AppData\\Roaming',
'CHOCOLATEYINSTALL':
'C:\\ProgramData\\chocolatey' })

④ Path and Direction Navigation

Function Description

chdir Changes the current working directory.

curdir Represents the current directory (".").

pardir Represents the parent directory ("..").

altsep Alternate path separator.

pathsep Separator used for file paths in PATH environment
variable.

sep The OS-specific file path separator (/ for Linux, \ for
Windows).

extsep Extension separator (.).

chdir(path)
Python ●●●

>>> import os
>>> os.chdir("D:\\Project\\Python"
)
>>> os.getcwd()
…… 'D:\\Project\\Python'

pathsep
Python ●●●

>>> import os
>>> os.pathsep
…… ';'

sep

Python ●●●
>>> import os
>>> os.sep
…… '\\' #Windows

extsep

Python ●●●
>>> import os
>>> os.extsep
…… '.'

⑤ Permissions and Security

Function Description

chmod Changes the permissions of a file.

lchmod Changes the permissions of a symbolic link.

fchmod Changes file permissions using a file descriptor.

access Checks user permissions for a file or directory.

umask Sets the file mode creation mask.

⑥ System Utilities

Function Description

open Opens a file descriptor.

close Closes a file descriptor.

dup, dup2 Duplicates file descriptors.

fsync Flushes file data to disk.

truncate Truncates a file to a given size.

read Reads data from a file descriptor.

write Writes data to a file descriptor.

lseek Moves the file pointer to a specific position.

cpu_count Returns the number of CPU cores available.

get_terminal_size Returns the terminal window size.

isatty Checks if a file descriptor refers to a terminal.

urandom Generates secure random bytes.

linesep Returns the OS-specific line separator (\n for
Linux/macOS, \r\n for Windows).

error Contains error-related exception classes.

strerror Returns error message strings based on error codes.

cpu_count()
Python ●●●

import os

>>> os.cpu_count()
…… 4

get_terminal_size()
Python ●●●

import os

>>> os.get_terminal_size()
…… os.terminal_size(columns=66, lines=11)

SYS Module

The sys module is a powerful utility in Python used to interact with and
retrieve abstract information about the system. It provides insights into the
operating system, Python runtime environment, and interpreter settings. This
module is widely used for handling system-level functionalities, command-
line arguments, runtime configuration, and process management.

Key Functionalities of the sys Module

The sys module's functionality can be broadly categorized into the following
areas:

✏System & Environment Information
Retrieve system-related details like OS, version, and execution environment.

✏Python Runtime Configuration
Access interpreter settings, execution parameters, and runtime limits.

✏ Memory & Performance Management
Optimize memory allocation and manage recursion limits.

✏ Input/Output Handling
Redirect standard input, output, and error streams.

✏Module & Path Management
Modify the Python module search path and interact with the import system.

SYS Methods

① System & Environment Information

Function Description

argv Retrieves command-line arguments passed to the
script.

executable Returns the path of the Python interpreter binary.

platform Returns the name of the operating system.

winver Retrieves the Windows version (Windows only).

getwindowsversion Returns version information about Windows OS
(Windows only).

hexversion Returns Python’s version as a hexadecimal number.

version Returns the Python version.

version_info Provides version details as a tuple.

copyright Displays Python’s copyright information.

dllhandle Returns the DLL handle of the Python process
(Windows).

orig_argv Retrieves the original command-line arguments.

flags Displays command-line flags passed to the interpreter.

prefix Returns the installation directory of Python.

base_prefix Similar to base_exec_prefix, returns the base
directory.

base_exec_prefix Gets the base directory of the Python installation.

platlibdir Retrieves the directory for platform-specific libraries.

sys.argv

The sys.argv module provides a way to access command-line arguments
within a Python script. These arguments are stored as a list, where the first
element (sys.argv[0]) is typically the script’s filename, and the subsequent
elements are the arguments passed via the command line, separated by
whitespace.

The following demonstrates how to retrieve command-line arguments:

#sample.py
Python ●●●

import sys

def addition():
 x = sys.argv[1] #first argument
 y = sys.argv[2] #second argument

 add = float(x) + float(y) #converting argument to float
 return add

#calling the function
result = addition()
print(result)

PS D:\Project\Development\Python> python sample.py 20 10
30.0

executable
Python ●●●

>>> import sys
>>> sys.executable
…… 'C:\\Python313\\python.exe'

platform
Python ●●●

>>> import sys
>>> sys.platfom
…… 'win32'

version

Python ●●●
>>> import sys
>>> sys.version
…… '3.13.0
(tags/v3.13.0:60403a5, Oct 7
2024, 09:38:07) [MSC v.1941 64
bit (AMD64)]'

platlibdir

Python ●●●
>>> import sys
>>> sys.platlibdir
…… 'DLLs'

② Python Runtime Configuration

Function Description

dont_write_bytecode Prevents Python from generating .pyc files.

pycache_prefix Specifies the location for storing .pyc files.

meta_path Lists meta path finders used for importing
modules.

path Lists directories where Python looks for modules.

path_hooks Contains hooks for path-based module importers.

path_importer_cache Caches module importers.

modules Displays all currently loaded modules.

stdlib_module_names Lists standard library module names.

builtin_module_names Lists all built-in modules compiled into Python.

implementation Provides details about the Python implementation
(e.g., CPython, PyPy).

exec_prefix Retrieves the path of platform-specific libraries.

warnoptions Lists warning options set by the interpreter.

path
Python ●●●

import sys

>>> sys.path

…… ['', 'C:\\Python313\\python313.zip', 'C:\\Python313\\DLLs',
'C:\\Python313\\Lib', 'C:\\Python313', 'C:\\Python313\\Lib\\site-packages']

modules
Python ●●●

import sys

>>> sys.modules
{'sys': <module 'sys' (built-in)>, 'builtins': <module 'builtins' (built-in)>,
'_frozen_importlib': <module '_frozen_importlib' (frozen)>, '_imp':
<module '_imp' (built-in)>, '_thread': 'calendar': <module 'calendar' from
'C:\\Python313\\Lib\\calendar.py'>}

③ Memory and Performance Management

Function Description

getsizeof() Returns the memory size of an object in bytes.

getallocatedblocks() Returns the number of allocated memory blocks.

getrefcount() Returns the reference count of an object.

getprofile() Retrieves the profiling function set by
sys.setprofile().

setprofile() Sets a profiling function for debugging.

gettrace() Returns the trace function set for debugging.

settrace() Sets a debugging trace function.

getrecursionlimit() Gets the maximum recursion depth.

setrecursionlimit Sets the maximum recursion depth.

get_int_max_str_digits() Returns the maximum number of digits allowed
in an integer.

set_int_max_str_digits() Sets the maximum allowed digits in an integer.

setswitchinterval() Configures the thread switch interval.

getswitchinterval() Gets the interval for thread switching.

maxsize Retrieves the maximum size of a Python object.

maxunicode Returns the largest Unicode code point
supported.

int_info Returns system-specific integer properties.

float_info Returns system-specific float precision and
limits.

float_repr_style Indicates how floating-point numbers are
represented.

hash_info Provides details about Python’s hash function.

④ Input/Output Handling

Function Description

stdin Standard input stream.

stdout Standard output stream.

stderr Standard error output stream.

displayhook Controls how output is displayed in interactive mode.

excepthook Holds the last exception object.

unraisablehook Handles unraisable exceptions.

⑤ Process, Debugging, Module, Execution and Exception Handling

Function Description

exit() Terminates the program with an optional
exit status.

exc_info() Retrieves information about the last
exception.

exception Holds the last exception object.

breakpointhook() Defines the behavior when calling
breakpoint().

audit() Reports security-sensitive operations to the
auditing system.

addaudithook() Adds an auditing hook for security checks.

monitoring Provides monitoring hooks for the
interpreter.

activate_stack_trampoline() Activates stack trampolining for
optimization.

deactivate_stack_trampoline() Deactivates stack trampolining.

is_stack_trampoline_active() Checks if stack trampolining is enabled.

call_tracing() Runs a function with tracing enabled for
debugging.

is_finalizing() Checks if Python is in the process of
shutting down.

thread_info Retrieves threading implementation details.

byteorder Indicates the byte order (endianness) of the
system.

getfilesystemencoding() Returns the encoding used for file system
operations.

getfilesystemencodeerrors() Retrieves the error handling strategy for
filesystem encoding.

getunicodeinternedsize() Returns the memory usage of interned
Unicode strings.

Pathlib Module

Programming across multiple operating systems (Windows, Linux, macOS)
presents challenges, especially when working with file paths. Each OS
follows different path conventions, which can lead to compatibility issues.
Python provides a unified way to handle file paths seamlessly across different
operating systems using the pathlib module.

With pathlib, a file path written for Windows can work on Linux without
modification, reducing the likelihood of path-related errors. However, pathlib
is not just for handling paths—it also allows you to search for files, create
directories, check file existence, rename, replace files, and even read or write
text and bytes efficiently.

Pathlib Classes

Class Description

Path Represents a file system path and provides methods for
working with files and directories.

PosixPath A subclass of Path used for Unix-like operating
systems (Linux/macOS).

WindowsPath A subclass of Path designed for Windows paths.

PurePath A version of Path that handles paths in a platform-
independent manner but doesn’t interact with the file
system.

PurePosixPath A subclass of PurePath that represents Unix-style
paths.

PureWindowsPath A subclass of PurePath that represents Windows-style
paths.

Path Methods

① Path Representation and Properties

Method Description

absolute() Returns the absolute path of the file/directory.

anchor Returns the root part of the path (C:\ on Windows, / on
Unix).

drive Returns the drive letter (Windows) or an empty string
(Linux).

home() Returns the home directory of the current user.

root Returns the root of the path (e.g., / on Unix, C:\ on
Windows).

name Returns the filename or last part of the path.

stem Returns the filename without the extension.

suffix Returns the file extension (e.g., .txt).

suffixes Returns all file extensions if there are multiple (eg.,
.tar.gz).

parents Returns a sequence of parent directories.

parent Returns the immediate parent directory.

parts Returns a tuple representing different components of the
path.

home()
Python ●●●

>>> import pathlib
>>> path = pathlib.Path.home()
>>> print(path)
…… C:\Users\Asiedu

root
Python

>>> import pathlib
>>>pathlib.Path("D:\\dev\\myfile.py
…… \
>>>

name

Python ●●●
>>> import pathlib
>>>
pathlib.Path("D:\\dev\\myfile.py").name
…… myfile.py
>>>

stem

Python
>>> import pathlib
>>>
pathlib.Path("D:\\dev\\book.docx
…… book
>>>

suffix

Python ●●●
>>> import pathlib
>>>

suffixes

Python
>>> import pathlib
>>> pathlib.Path("ebooks.tar.gz

pathlib.Path("D:\\dev\\book.docx").suffix
…… docx
>>>

…… ['.tar', '.gz']
>>>

parts

Python ●●●
>>> import pathlib
>>>
pathlib.Path("D:\\dev\\book.docx").parts
…… ('D:\\', 'dev', 'book.docx')
>>>

parent

Python
>>> import pathlib
>>>
pathlib.Path("D:\\dev\\myfile.py
…… 'D:\\dev'
>>>

② File and Directory Operations

Method Description

mkdir(parents,
exist_ok)

Creates a new directory.

rmdir() Removes an empty directory.

unlink(missing_ok) Deletes a file.

rename(target) Renames the file or directory to a new location.

replace(target) Renames a file or directory, overwriting if
necessary.

touch(mode, Creates an empty file or updates its timestamp.

exist_ok)

symlink_to(target) Creates a symbolic link to the target file/directory.

hardlink_to(target) Creates a hard link to the target file.

mkdir(mode, parents, exist_ok)
Python ●●●

>>> import pathlib
>>>
pathlib.Path("Desktop\\NewDoc").mkdir()
>>>

rmdir()
Python

>>> import pathlib
>>>pathlib.Path("D:\\dev\\Doc
>>>

unlink(missing_ok)

Python ●●●
>>> import pathlib
>>> pathlib.Path("newfile.docx").unlink()
>>>

rename(target)

Python
>>> import pathlib as plib
>>>
plib.Path("book.txt").rename("
>>>

replace(target)

Python ●●●
>>> import pathlib as plib
>>>
plib.Path("book.txt").replace("ebook.py")

touch()

Python
>>> import pathlib
>>> pathlib.Path("newbook.docx
>>>

>>>

③ File and Directory Status

Method Description

exists() Returns True if the path exists.

is_absolute() Returns True if the path is absolute.

is_relative_to(other) Returns True if the path is relative to other.

is_reserved() Returns True if the path is reserved (Windows only).

is_dir() Returns True if the path is a directory.

is_file() Returns True if the path is a file.

is_symlink() Returns True if the path is a symbolic link.

is_mount() Returns True if the path is a mount point.

is_fifo() Returns True if the path is a FIFO (named pipe).

is_socket() Returns True if the path is a socket.

is_junction() Returns True if the path is a junction (Windows
only).

exists()
Python ●●●

>>> import pathlib
>>> pathlib.Path("D:\\dev\\Doc
").exists()
….. True
>>>

is_absolute()
Python ●●●

>>> import pathlib as plib
>>> plib.Path("D:\\dev\\Doc
").is_absolute()
….. True

is_file()

Python ●●●
>>> import pathlib
>>> pathlib.Path("Ebook.docx
").is_file()
….. True

>>> pathlib.Path("MyDoc
").is_file()
….. False

is_dir()

Python ●●●
>>> import pathlib
>>>
pathlib.Path("D:\\dev\\Doc").is_dir()
….. True

>>>
pathlib.Path("D:\\dev\\myfile.txt
").is_dir()
….. False

④ File and Directory Searching

Method Description

glob(pattern) Finds all files matching the pattern (e.g., "*.txt").

rglob(pattern) Recursively searches for files matching the pattern.

match(pattern) Checks if the path matches a given pattern
("*.txt").

walk() Iterates through the directory tree.

iterdir() Iterates over files and directories in the current
directory.

glob(pattern, case_sensitive)

case_sensitive → If True, the search will distinguish between uppercase and
lowercase letters.

Python ●●●
import pathlib

files = pathlib.Path("D:\\Project").glob("*docx")

for items in files:
 print(items)

#Output

D:\Project\Employee.docx
D:\Project\Student.docx
D:\Project\template.docx
D:\Project\Letter.docx
D:\Project\sample.docx

Deep
"*" → Lists all files in the specified path.
"*end" → Lists all files that end with "end" in the path.
"begin*" → Lists all files that start with "begin" in the path.
"begin*end" → Lists all files that start with "begin" and end with "end" in
the path.

glob.glob()

The glob.glob() function works similarly to Path.glob(), both being used to
search for files that match a specified pattern.

Key Difference

glob.glob(pattern, path) → The path is passed as a parameter to
the glob function.

Path(path).glob(pattern) → The path is specified inside the Path
class before calling glob().

Example ,

Python ●●●

import glob

files = glob.glob(pathname= "*mp3", root_dir=".")

for items in files:
 print(items)

#Output
westlife.mp3
demo.mp3
crack_records.mp3

Other glob Methods

Method Description

iglob(pattern, recursive) Works like glob() but returns an iterator
instead of a list, which is more memory-
efficient.

escape(pathname) Escapes special characters (*, ?, [) in a given
pathname so they are treated as literal
characters instead of wildcards.

fnmatch(filename, pattern) Checks if a filename matches a given pattern,
considering case sensitivity based on the OS.

fnmatchcase(filename,
pattern)

Similar to fnmatch(), but case-sensitive
regardless of the OS.

has_magic(pattern) Returns True if the pattern contains wildcard
characters (*, ?, []).

glob0(dirname, basename) Helper function that performs non-recursive
matching within a directory.

glob1(dirname, pattern) Similar to glob0(), but specifically for non-
recursive wildcard expansion in a directory.

translate(pattern) Converts a glob pattern into a regular
expression (re) pattern for use in filtering.

contextlib Used for context management (e.g., safely
handling file access).

functools Provides higher-order functions like caching
and function composition.

itertools Supports efficient looping constructs and
iteration utilities.

operator Provides efficient operations for function-
based comparisons.

os Used to interact with the filesystem (e.g.,
listing directories).

re Used for translating wildcard patterns into
regex for pattern matching.

stat Retrieves file status and metadata.

sys Provides access to system-specific

parameters.

magic_check(pattern) Validates if the given pattern contains
wildcard characters.

magic_check_bytes(pattern) Similar to magic_check(), but works on byte
strings instead of text.

walk()

Python ●●●
import pathlib

files = pathlib.Path("D:\\Project\\Python").walk()

for items in files:
 print(items)

#Output
(WindowsPath('D:/Project /Python'), ['mydir', '__pycache__'], ['chapter.jpg',
'chapter.xcf', 'justpython.py', 'mumvoce.mp3', 'Python.docx', ,
'pytonTemp.docx', 'template.docx', '~$Python.docx', '~$tonTemp.docx',
'~WRL0106.tmp'])
(WindowsPath('D:/Project/ Python/mydir'), ['doc', 'Document', 'media',
'music', 'MyDir', 'pictures'], [])

iterdir()

Python ●●●
import pathlib

files = pathlib.Path("C:\\Users\\PC\\Desktop").iterdir()

for items in files:
 print(items)

#Output
C:\Users\PC\Desktop\Adobe InDesign 2020.lnk
C:\Users\PC\Desktop\cook.txt
C:\Users\PC\Desktop\Documents.lnk
C:\Users\PC\Desktop\Excel.lnk
C:\Users\PC\Desktop\Facebook.lnk
C:\Users\PC\Desktop\Gmail.lnk
C:\Users\PC\Desktop\Pizza on the Grill Recipe.lnk

⑤ File Reading and Writing

Method Description

open(mode, encoding) Opens the file for reading or writing.

read_bytes() Reads the file as bytes.

read_text(encoding) Reads the file as a string.

write_bytes(data) Writes bytes to the file.

write_text(data,encoding) Writes a string to the file.

open()
Python ●●●

import pathlib

text= pathlib.Path("sample.txt").open()

for line in text.readlines():
 print(line)

#Output
Python coding is awesome
Just give me a coffee

Deep

The use of Pathlib for reading and writing files is explored in more detail in
the next chapter on File Handling and Byte Operations.

⑦ Path Modification and Construction

Method Description

as_posix() Returns a POSIX-style (Unix-like) string
representation of the path.

as_uri() Converts the path into a file URI
(file:///C:/Users/...).

expanduser() Expands ~ to the user’s home directory.

joinpath(*other) Joins multiple path components
(p.joinpath("subdir", "file.txt")).

relative_to(*other) Returns a relative path based on the given base
path.

resolve() Returns the absolute path, resolving any

symbolic links.

with_name(new_name) Returns a new path with the same directory but a
different filename.

with_stem(new_stem) Returns a new path with the same directory but a
different filename without changing the
extension.

with_suffix(new_suffix) Returns a new path with the same directory but a
different file extension.

joinpath(path)
Python ●●●

>>> import pathlib

>>> path = pathlib.Path("Document").joinpath("Data" , "MyData.docx")
>>> print(path)
…… Document\Data\MyData.docx

>>> path = pathlib.Path.home().joinpath("video.mp4")
>>> print(path)
…… C:\Users\Asiedu\video.mp4

as_posix()
Python ●●●

>>> import pathlib

>>> path = pathlib.Path.home()
>>> print(path)

…… C:\Users\Asiedu

>>> posix_path = pathlib.Path.home().as_posix()
>>> print(posix_path)
…… C:/Users/Asiedu

as_uri()
Python ●●●

>>> import pathlib

>>> path = pathlib.Path("C:\\media\\music\\westlife.mp3").as_uri()
>>> print(path)
…… file:///C:/media/music/westlife.mp3

with_name(filename)
Python ●●●

>>> import pathlib

>>> path =
pathlib.Path("Document\\Books\\redbook.pdf").with_name("greenbook.pdf")
>>> print(path)
…… Document\Books\greenbook.pdf

with_suffix(suffix)
Python ●●●

>>> import pathlib

>>> path = pathlib.Path("Books\\mybook.pdf").with_suffix(".docx")
>>> print(path)
…… Books\mybook.docx

⑧ File Metadata and Permissions

Method Description

chmod(mode) Changes the file’s permissions.

lchmod(mode) Changes the file’s permissions but doesn’t follow
symbolic links.

owner() Returns the owner of the file.

group() Returns the group owner of the file.

stat() Returns file metadata (size, creation date, etc.).

lstat() Like stat(), but doesn’t follow symbolic links.

samefile(other_path) Returns True if both paths point to the same file.

Handling Errors and Exceptions

Programming inherently involves errors or bugs. Writing code requires
applying human logic while adhering to the programming language’s
structure, syntax, and semantic rules. However, mistakes in logic, incorrect
syntax, or unforeseen runtime conditions can lead to errors or exceptions.

Errors in a program are commonly referred to as bugs. Regardless of a
programmer's experience, encountering bugs is inevitable, making error
handling an essential part of software development. Errors can cause
programs to behave unexpectedly, produce incorrect results, or fail to run
entirely.

Python is an interpreted language, meaning it executes code line by line.
When an error occurs, execution stops immediately, preventing further code
from running. To ensure smooth execution and prevent abrupt program
crashes, error handling is crucial.

Reasons for Handling Errors in Programming

✏ To prevent program crashes: Proper error handling ensures
that a single error does not cause the entire program to terminate
unexpectedly.

✏ To allow a program to continue running despite
encountering an error: Handling exceptions gracefully allows a
program to recover from errors and continue execution.

✏ To display user-friendly error messages: Instead of
showing cryptic system-generated messages, developers can

provide clear error messages to guide users on what went wrong.

✏ To use errors as conditions for executing alternative
tasks: Some exceptions may indicate an expected situation that can
be handled by executing a fallback solution.

✏ To log errors for debugging and future reference:
Logging errors helps developers identify issues and improve the
software over time.

✏ To enhance security: Some unhandled errors can expose
sensitive information or allow attackers to exploit vulnerabilities in
the software.

✏ To improve software reliability and maintainability:
Well-structured error handling ensures that software remains stable
and easy to maintain in the long run.

Errors in Python Programming

In Python, errors can arise due to several factors. They may be caused by
logic mistakes, syntax violations, structural misconfigurations, incorrect data
handling, incompatible data types, or missing dependencies.

Python errors are broadly categorized into two main types:

1. Syntax Errors

2. Runtime Errors

Syntax Errors

Every programming language follows a strict set of structural rules for using
variables, objects, functions, keywords, operators, punctuation, and
mnemonics. When these elements are not used correctly, or the required
syntax is not followed, Python raises a syntax error. Syntax errors occur
during the parsing stage and prevent the program from running.

Common Causes of Syntax Errors:

Incorrect indentation – Python enforces indentation to structure code blocks
properly.

Python ●●●
def myFunc():
print("Hello World!") #incorrect indentation

#Output
IndentationError: expected an indented block after function definition on

line 2

Missing colons (:) – Required for defining functions, loops, and conditionals.

Python ●●●
def myFunc() #missing colons
 print("Hello World!")

#Output
SyntaxError: expected ':'

Empty code blocks without the pass keyword – Python does not allow
empty function or loop bodies.

Python ●●●
def myFunc(): #empty block

def hello():
 print("Hello World!")

#Output
IndentationError: expected an indented block after function definition on

line 3

Misspelled keywords or function names – Example: writing prnt() instead
of print().

Python ●●●

prnt("Hello World!") #wrong spelling of print

#Output
NameError: name 'prnt' is not defined. Did you mean: 'print'?

Mismatched parentheses, brackets, or braces – Example: print("Hello
World" (missing closing parenthesis).

Python ●●●

print("Hello World!" #no closing parentheses

#Output
SyntaxError: '(' was never closed?

Incorrect use of assignment (=) instead of comparison (==) – Example: if
x = 5: instead of if x == 5:.

Python ●●●
var = 5
if var = 5: #incorrect use of assignment (==)
 print("Hello World!"

#Output
SyntaxError: invalid syntax. Maybe you meant '==' or ':=' instead of '='?

Unclosed string literals – Example:

Python ●●●

var = "Python #unclosed string

#Output
SyntaxError: unterminated string literal (detected at line 2)

Using reserved words as variable names – Example: def = 10 (since def is
a keyword).

Python ●●●

def = 10 #def is a keyword

#Output
SyntaxError: invalid syntax

Runtime Exception

Runtime errors occur during the execution of a program rather than during
compilation or syntax checking. These errors are not caused by violations of
the language's syntax or structure but rather by logical mistakes, incorrect
operations, invalid data handling, or unexpected conditions. Unlike
syntax errors, which prevent the program from running, runtime errors appear
while the program is running and may cause it to crash or behave
unexpectedly.

Common Causes of Runtime Errors:

Runtime

exception

Description

ZeroDivisionError Occurs when a number is divided by zero

KeyError Attempting to access a dictionary key that does not
exist.

NameError Trying to use a variable that has not been declared.

IndexError Attempting to access a list, tuple, or string index that
does not exist.

TypeError Performing operation on incompatible types. For
example, trying to add a string and an integer.

IndentationError Wrong indentation in program

FloatingPointError Operations on floating point fail

ImportError Imported module is not found

AssertionError Assertion statements fail

FileNotFoundError Trying to open a non-existent file

AttributeError An invalid attribute reference or assignment is
attempted

RecursionError When recursion exceeds the system limit.

UnicodeError An encoding or decoding operation fails

EOFError The input() function reaches the end-of-file
condition

Table 12.0: Some runtime exceptions in Python

Handling Errors and Exceptions

Errors and exceptions can be addressed in a program during
debugging, allowing developers to correct them before deployment.
However, some errors may only occur under specific conditions,
such as user input errors, file access issues, or network failures.
These types of errors are unpredictable and can arise during the
production stage of an application. To prevent a program from
crashing and to ensure it continues running smoothly, error
handling is necessary.

Python provides two main ways to handle errors and exceptions:

1. try-except Block – Used to catch and handle specific errors,
preventing the program from crashing when an exception occurs.

2. try-finally or try-except-finally Block – Ensures that certain
cleanup operations (e.g., closing files or releasing resources) are
executed, regardless of whether an exception occurs.

try-except

In this approach, the code that is likely to raise an exception is placed inside
the try block. If an exception occurs, the except block is executed to handle
the error. However, if no exception occurs, the statements inside the except
block will not run.

Syntax

try:

 #statement or code

except ErrorType:
 #statement or code

Note

The ErrorType is optional and can be any of the runtime errors listed
above. It allows the execution of specific statements when multiple
statements are likely to raise different types of errors. However, the
program will still handle errors properly even without specifying an
ErrorType.

Example 1, the following code demonstrates handling a ZeroDivisionError:

#Handled exception

Python ●●●

try:
 result = 200 / 0

except ZeroDivisionError:
 print("Error: Number was
divided by zero")

#Output
Error: Number was divided by zero

#Unhandled exception

Python ●●●

result = 200 / 0

#Output
 result = 200 / 0
             ~~~~^~~
ZeroDivisionError: division by
zero
 
 
 
 

 

 

 

 

Example 2, the following code demonstrates handling a TypeError:

 

#Handled exception
 

Python ●●●

#Unhandled exception
 

Python ●●●



 
def whenError():
       print("Program has bugs")
 
try:
      var = 10 + "20"
except:
   whenError():
 

 

#Output
Program has bugs
 

 

 
 
  var = 10 + "20"
 
 

 

#Output
    var = 10 + "20"
          ~~~^~~~
TypeError: unsupported operand
type(s) for +: 'int' and 'str'

try-finally
The try-finally approach is useful in situations where certain statements or
functions must execute regardless of whether an error occurs.

✏The code that might raise an error is placed inside the try block.

✏The except block is optional and can be used to handle specific
exceptions.

✏The finally block always executes, whether an error occurs or
not. The finally block is mainly used for cleanup operations, such
as closing files, releasing resources, or disconnecting from
databases.

Syntax

try:

 #statement or code

finally:
 #statement or code

try:

 #statement or code

except ErrorType:
 #statement or code

finally:
 #statement or code

Example 1, the following code demonstrates handling NameError

Python ●●●
try:
 result = var + 20 #variable is not defined
finally:
 print("Execution completed")

#Output
Execution completed
result = var + 20
 ^^^
NameError: name 'var' is not defined. Did you mean: 'vars'?

Example 2, the following code demonstrates handling IndexError

Python ●●●
try:
 var = [1, 2, 3]
 item = var[10] #index is out of range
except:
 print("IndexError: exception has occurred")

finally:
 print("Execution completed")

#Output
IndexError: exception has occurred
Execution completed

Deep

Errorsޡ
These are issues that arise due to incorrect code structure, syntax, or system
limitations, making the program unable to execute.

Exceptionsޡ
These occur during the execution of a program when an unexpected
condition is encountered, such as dividing by zero or accessing an invalid
index.

File Handling

A file is a collection of data stored on a computer that can be accessed and
manipulated by programs. Files can contain various types of data, including:

Text-based content (e.g., .txt, .csv, .json, .xml, .docx)

Binary data (e.g., images: .jpg, .png, videos: .mp4, .avi, audio: .mp3,
.wav)

Executable files (.exe, .bin, .sh)

Compressed archives (.zip, .tar, .rar)

Database files (.sqlite, .db)

In Python, before accessing or modifying a file, it must first be opened.
Python provides built-in support for file handling, allowing files to be read,
written, modified, and even converted between different formats.

File Operations

Python offers several methods for handling files, including:

✏ Opening a file

✏ Reading a file

✏ Writing to a file

✏ Appending data to a file (a mode)

✏ Accessing file attributes

✏ Closing a file

① Opening Files

Python is a flexible language that provides multiple ways to open a file.
However, in this book, we will explore two of the most commonly used
methods.

1. Using open()

The open() function is the standard way to open files in Python. It allows you
to specify various parameters, including the file path, mode, encoding, and
more.

Syntax

file = open("path/to/file", "w")

or using the with statement (which ensures the file is properly closed after
use):

with open("path/to/file", "w") as file:
 pass #file operations go here

The open() Parameters

open(file, mode="r", buffering=-1, encoding=None, newline=None,
errors=None)

Parameters:

file → The path to the file (can be a string or Path object).

mode → Specifies how the file should be opened. (See the table
below for available modes.)

buffering → Controls buffering: 0 for no buffering (binary mode), 1 for
line buffering (text mode), >1 for a custom buffer size, and
-1 (default) lets Python decide.

encoding → Specifies the encoding (e.g., "utf-8", "ascii"). Only

applicable in text mode.

newline → Determines how newlines are handled (None, '\n', '\r', '\r\n').
Useful when working with different operating systems

errors → Defines how errors in encoding/decoding are handled (e.g.,
"strict", "ignore", "replace").

closefd → If True (default), the file descriptor is closed when the file is
closed. Should be False only when working with file
descriptors instead of file paths.

File Modes

Mode Description

'r' Read mode (default). Fails if the file does not exist.

'w' Write mode. Overwrites the file if it exists; creates a new file if it
doesn’t.

'a' Append mode. Adds new content to the end of the file. Creates
the file if it doesn’t exist.

'x' Exclusive creation mode. Fails if the file already exists.

'rb', 'wb' Binary mode (e.g., for images, videos, and executables). 'rb' for
reading bytes and 'wb' for writing bytes.

'rt', 'wt' Text mode (default). 'rt' for reading and 'wt' for writing the txt

'+' Read and write mode (e.g., 'r+', 'w+', 'a+', 'rb+', 'wb+').

2. Using pathlib.Path.open()

Another way to open files is through the pathlib library, which provides a
more object-oriented approach to file handling. This method offers the same
parameters as open(), but allows working with file paths more intuitively.

Syntax

import pathlib
file = pathlib.Path("path/to/file").open()

Deep

The pathlib module has been discussed in more detail in Chapter 13: Pathlib
and Glob.

② Reading and Writing Files

After opening a file using either the built-in open() function or the pathlib
module, the file can be read from or written to.

Reading Files

① Using open()

Syntax

file = open("path/to/file")
file.read() # Reads the entire content
file.readline() # Reads a single line
file.readlines() # Reads all lines into a list

Example 1

Python ●●●
file = open("myfile.txt")
text = file.read()
print(text)
file.close()

#Output
Python coding is awesome
Just give me a coffee

Example 2

Python ●●●

with open("myfile.txt") as f:
 text = f.readlines()
 print(text)

#Output
['Python coding is awesome\n', 'Just give me a coffee']

Note

The close() function is used to manually close a file after it has been
opened. However, when a file is opened using the with statement, it
is automatically closed once the block is exited. It's always good
practice to close a file after use to ensure that system resources are
properly released.

② Using pathlib.Path.open()

Syntax

from pathlib import Path

path = Path('path/to/file').open()
path.read() # Reads the entire content
path.readline() # Reads a single line
path.readlines() # Reads all lines into a list

Example 1

Python ●●●
from pathlib import Path

path = Path('sample.txt').open()
text = path.read()
print(text)

#Output
Hello,
Hope you’re having fine with files?

Example 2

Python ●●●
from pathlib import Path

path = Path('sample.txt').open()
text = path.readline()
print(text)

#Output

Hello,

③ Using pathlib shortcuts

Syntax

from pathlib import Path

text = Path('path/to/file').read_text() # Reads as text
byte = Path('path/to/file').read_bytes() # Reads as bytes

Example

Python ●●●
from pathlib import Path

text = Path('mytext.txt').read_text()
print(text)

#Output
Python coding is awesome
Just give me a coffee

Reading Binary Files

Example

Python ●●●
from pathlib import Path

bytes = Path('image.jpg').read_bytes()

Writing to Files

① Using open()

Syntax

file = open("path/to/file", "w")
file.write(data)
file.writelines(data)

Example

Python ●●●
file = open("newfile.txt", "w")
file.write("Hello,\nIt’s fun working with files")
file.writelines(["Awesome coding,\n", "Happy Pythonizing"])
file.close()

Writing Binary Files

Example, Reading from an Image file and writing to a new image file.

Python ●●●
file = open("image.jpg", "rb")
bytes = file.read()
file.close()

image = open("newImage.png", "wb")
image.write(bytes)
image.close()

② Using pathlib.Path.open()

Syntax

from pathlib import Path

path = Path('path/to/file').open(mode = 'w')
path.write(data)
path.readlines(data)

Example

Python ●●●
path = Path('newfile.txt').open(mode = 'w')
path.write("Hello, World\n")
path.writelines(["Hello\n", "File handling is interesting\n", "Happy
Pythonizing"])
path.close()

Writing Binary Files

Example, Reading from an audio file and writing a new audio file

Python ●●●

path = Path('music.mp3').open(mode = 'rb')
bytes = path.read()
path.close()

music = Path('mymusic.ogg').open(mode = 'wb')
music.write(bytes)
music.close()

③ Using pathlib shortcuts

Syntax

from pathlib import Path

Path('path/to/file').write_text(text)
Path('path/to/file').writebytes(data)

Example

Python ●●●
from pathlib import Path

text = 'Hello World'
Path('newFile.txt').write_text(text)

Writing Binary Files

Python ●●●
from pathlib import Path

bytes = Path('image.jpg').read_bytes()
Path('newImage.png').write_bytes(bytes)
Path('bytefile.exe').write_bytes(b"writing to bytes")

③ Appending Data to a File

Appending data to a file means adding new content to an existing file

without overwriting its original content—typically used with text files.

This is done using the write methods in append mode ('a').

Example 1

Python ●●●

with open("myfile.txt", "a") as file:
 file.write("\nThis line is added to the file")

Example 2

Python ●●●

with open("myfile.txt", "a") as file:
 file.write("\nThis line is added to the file")

with open("myfile.txt", "a") as file:
 text = file.read()
 print(text)

#Output
Hello World
This line is added to the file

④ Accessing File Attributes

File attributes provide metadata and useful information about a file

object. Once a file is opened, you can access several of its attributes to

learn about the file’s name, mode, encoding, and more.

Attribute Description

file.name Returns the name of the file.

file.mode Returns the mode used to open the file ('r', 'w', 'a',
etc.).

file.closed Returns True if the file is closed; otherwise, False.

file.encoding Returns the encoding used (for text files only).

file.fileno() Returns the file descriptor (an integer) used by the
operating system.

file.readable() Returns True if the file was opened in a readable
mode.

file.writeable() Returns True if the file was opened in a writable
mode.

file.seekable() Returns True if the file supports random access
(seeking).

file.tell() Returns the current position of the file pointer (in
bytes).

file.seek(ofset) Moves the file pointer to a specified position.

Python ●●●

file = open("sample.txt")
print(file.name)
print(file.mode)
print(file.closed)
print(file.encoding)
print(file.readable)

#Output
sample.txt
r
False
cp1252
<built-in method readable of _io.TextIOWrapper object at
0x000002E74C507920>

HTTP Requests

Python’s requests library is one of the most popular and user-friendly tools
for making HTTP requests. It allows your Python program to interact with
web services, download content from the internet, submit data via forms,
communicate with APIs, and more.

Key Features:

✏ Supports all HTTP methods (GET, POST, PUT, DELETE, etc.)

✏ Easy access to response content in various formats

✏ Handles cookies, headers, sessions, and authentication

✏ Works well with JSON APIs

✏ Simplifies error handling and redirects

Installation

Installation can be done using the pip install command in the terminal or
command line interface.

$ pip install requests

Common Requests Methods

Method Description

get() Retrieve information from the server

post() Submit data to the server

put() Replace existing data on the server

patch() Partially update data

delete() Remove data from the server

head() Return headers without the body

options() Returns server-supported methods

auth() Contains support for HTTP Basic/Digest Auth.

cookies Manage and inspect HTTP cookies.

ssl Internal SSL utilities.

session Manage cookies and connections across multiple
requests:

GET() Requests

The get() method is used to make an HTTP request to a web server. It

returns a response, which can be either successful (positive) or

unsuccessful (negative). A negative response typically results from an

HTTP error (such as 404 or 500), while a positive response contains

data from the server.

The response can be accessed in various formats, such as:

text – returns the response body as a string. ޡ

json() – returns the response in JSON format (if applicable). ޡ

content – returns the response as raw bytes. ޡ

status_code – provides the HTTP status code of the response. ޡ

Parameters

url → The URL you are making a GET request to.

params → (dict or bytes) — Appends query string to the

URL.

headers → (dict) — Custom headers like user-agent, auth

token, etc.

cookies → (dict or CookieJar) — Send cookies with the

request.

auth → (tuple) — For basic authentication: ('username',

'password').

timeout → (float or tuple) — How long to wait for a

response. Prevents hanging.

allow_redirects → (bool) — Whether to follow redirects (default is

True).

proxies → (dict) — Use a proxy server for the request.

stream → (bool) — If True, doesn't download the response

immediately.

verify → (bool or str) — SSL certificate verification. Set to

False to ignore SSL (not recommended).

cert → (str or tuple) — Client-side SSL certs, if required.

Example 1

Python ●●●
import requests
response = requests.get(url= "https://google.com/")
print(response.url)
print(response.json())
print(response.status_code)

#Output
https://www.google.com/
<bound method Response.json of <Response [200]>>
200

Example 2

Python ●●●
import requests

url = "https://google.com/"

params = {"search": "python"}
headers = {"User-Agent": "MyApp"}
cookies = {"session": "123abc"}

response = requests.get(
 url= url,
 params = params,
 headers = headers,
 cookies = cookies,
 timeout = 5,
 allow_redirects = True
)
print(response.text)

#Output
<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage" lang="en-GH"><head><meta
content="text/html; charset=UTF-8" http-equiv="Content-Type"><meta
content="/images/googleg/1x/googleg_standard_color_128dp.png"
})();</script> …………..</body></html>

Deep

Common HTTP Status Codes

Code Meaning Code Meaning

200 OK 400 Bad Request

201 Created 401 Unauthorized

204 No Content 403 Forbidden

301 Moved Permanently 404 Not Found

304 Not Modified 500 Internal Server Error

Downloading a File

Python ●●●
import requests

response = requests.get(url= "https://example.com/image.png")

with open("downloadedImage.jpg", "wb") as file:
 file.write(response.content)

POST() Requests

The post() method is commonly used to send data to a server, typically
through a form or an API. Unlike get(), which is used for retrieving data,

post() is designed for submitting data (e.g., creating a new resource).

Although post() can also return a response, it is not primarily used for
retrieving content like get(). The returned response can still be accessed using
.text, .json(), or .status_code just like with get().

Parameters

url → (str) The endpoint you're sending the request to.

data → (dict, bytes, or file-like) Data to send in the body

(form-encoded).

headers → (dict) — Custom headers like user-agent, auth

token, etc.

json → (dict) A JSON payload to send (sets Content-

Type: application/json).

cookies → (dict or CookieJar) — Send cookies with the

request.

auth → (tuple) — For basic authentication: ('username',

'password').

timeout → (float or tuple) — How long to wait for a

response. Prevents hanging.

files → (dict) Used for file upload. Format: {'file':

open('filename', 'rb')}.

allow_redirects → (bool) — Whether to follow redirects (default is

True).

proxies → (dict) To route the request through a proxy.

stream → (bool) — If True, doesn't download the response

immediately.

verify → (bool or str) SSL cert verification. Set to False to

skip (not recommended).

cert → (str or tuple) — Client-side SSL certs, if required.

Example 1, Sending Form Data

Python ●●●
import requests

payload = {'username': 'user', 'password': 'pass'}
response = requests.post('https://httpbin.org/post', data=payload)
print(response.text)

Example 2, Sending JSON Data

Python ●●●
import requests

json_data = {'id': 101, 'name': 'John'}
response = requests.post('https://httpbin.org/post', json= json_data)
print(response.json())

Uploading a File

Example 3

Python ●●●
import requests

file = open('myImage.jpg', 'rb')

data = {'file': file }
response = requests.post('https://httpbin.org/post', files = data)
print(response.text)

PUT() Requests

✏ Replaces the entire resource with new data.

✏ Often used when you know the full structure of the resource.

Example

Python ●●●
import requests

url = "https://api.example.com/user/123"
data = {"name": "Alice", "email": "alice@example.com"}
response = requests.put(url = url, json = data)
print(response.status_code)

PATCH() Requests

✏ Updates only part of the resource.

✏ Useful when you want to change one or two fields.

Example

Python ●●●
import requests
url = "https://api.example.com/user/123"
data = {"email": "newemail@example.com"}
response = requests.patch(url = url, json = data)
print(response.status_code)

DELETE() Requests

✏ Deletes the specified resource from the server.

✏ Usually doesn't require a body.

Example

Python ●●●
import requests

url = "https://api.example.com/user/123"
response = requests.delete(url)
print(response.status_code)

Note

PUT, PATCH, and DELETE methods accept the same arguments as POST

and GET, such as headers, params, data, json, auth, and timeout. The
difference lies in the type of action each method performs on the server.

JSON

The json module in Python plays a crucial role in data exchange, especially
between systems or applications. It allows for:

✏ Encoding (serialization): Converting Python objects into
JSON-formatted strings.

✏ Decoding (deserialization): Converting JSON-formatted
strings back into Python objects.

JSON is commonly used when:

Receiving data from web servers (APIs).
Communicating with applications written in other languages (e.g.,
JavaScript, Java, PHP).
Storing lightweight configuration files or settings.
Persisting structured data in a human-readable format.

Deep

JSON data is structured as key-value pairs, much like Python dictionaries.
{ key : value }

Why Use JSON?

➡ Supports structured data like objects, arrays, numbers, strings, booleans,
and null.

➡ Easy to read and write for both humans and machines.

➡ Lightweight format with small size — great for transmitting over the
web.

➡ Language-independent but supported in almost every programming
language.

➡ Fast parsing and generation.

➡ Ideal for RESTful APIs.

➡ Easily integrates with HTTP requests and responses.

Common JSON Methods

Method Description

json.dump() Serialize Python object and write to file

json.dumps() Serialize Python object to JSON string

json.load() Deserialize JSON content from a file

json.loads() Deserialize JSON string to Python object

Encoding (Serialization)

dump() and dumps()

Common Parameters

Parameter Type Description Example

obj Any The Python object to
serialize (e.g., dict, list).
Required.

json.dumps({"name":
"John"})

fp File
object

File-like object with a
.write() method where
the output is written.
Used only in
json.dump().

json.dump(data,
open("file.json",
"w"))

skipkeys bool If True, skips non-string
dictionary keys instead
of raising a TypeError.

skipkeys=True

ensure_ascii bool If True, escapes non-
ASCII characters using
\uXXXX sequences.

ensure_ascii=False

check_circular bool If False, disables
circular reference
checks. Defaults to
True.

check_circular=True

allow_nan bool If True, allows NaN,
Infinity, and -Infinity.
Defaults to True.

allow_nan=True

cls Class A custom JSONEncoder
subclass for custom
serialization.

cls=CustomEncoder

indent int or str When None, output is indent=4 ,

compact; an int
provides spacing; a str
(like "\t") allows custom
indent characters.

indent="\t"

separators tuple Controls how items are
separated:
(item_separator,
key_separator). Defaults
to (', ', ': ').

separators=(',', ':')

default Function A function called for
objects that can’t be
serialized by default.

default=str

sort_keys bool If True, the output will
be sorted by dictionary
keys.

sort_keys=True

json.dump()

Python ●●●
import json

data = {
 "firstname" : "George",
 "lastname" : "Wood",
 "country" : "Canada",
 "age" : 25,
 "id" : 68392

}

with open("data.json", "w") as file:
 json.dump(data, file)

-The code above saves a file named data.json that contains JSON ޡ
formatted data.

JSON files use the .json file extension ޡ

Deep

Reading and writing files with open() were covered in the previous chapter
under File Handling and Byte Operations.

Example 2

Python ●●●
import json

profile = {"name" : "Bob", "email" : "bob@gmail.com", "profession" :
"Data Scientist"}
fileObj = open("profile.json", "w")
json.dump(profile, fileObj)

json.dumps(obj)

Python ●●●
import json

student = {
 "name" : "John",
 "college" : "Harvard",
 "year" : 2,
 "course" : "Computer Science"
}

#serialize string to JSON
jsonString = json.dumps(student)

print(jsonString)

#Output
{"name": "John", "college": "Harvard", "year": 2, "course": "Computer
Science"}

Key Points about json.dumps():

json.dumps() takes a Python object (commonly a dictionary) as a ޡ
required argument.

.It serializes (encodes) the object into a JSON-formatted string ޡ

The resulting JSON string can then be sent over a network, written to a ޡ
file, or passed to other systems or languages.

It ensures the data is converted into a text format that complies with the ޡ
JSON standard.

:Supports optional parameters such as ޡ

indent – to pretty-print the output with indentation.
separators – to control item and key-value separators.
sort_keys – to sort dictionary keys in the output.

It is the inverse of json.loads(), which is used to decode JSON strings ޡ
back into Python objects.

It cannot serialize all Python objects (e.g., sets, bytes, or custom objects) ޡ
unless you provide a default serializer function.

Decoding (Deserialization)

load() and loads()
Common Parameters

Parameter Type Description Example

fp File
object

A file-like
object
containing a
JSON
document.

json.load(open("data.json"))

s str JSON string
to decode.

json.loads('{"name": "Alice"}')

cls Class Custom
JSONDecoder
subclass.

cls=MyDecoder

object_hook function Custom
function to
convert dicts
into custom
objects.

object_hook=my_converter

parse_float function Custom
function to
parse float
values (e.g.,
to use
Decimal).

parse_float=Decimal

parse_float function Custom
function to
parse integer
values.

parse_int=lambda x: int(x) * 2

parse_constant function Handles parse_constant=my_handler

constants like
NaN, Infinity,
and -Infinity.

object_pairs_hook function Similar to
object_hook
but called
with a list of
key-value
pairs.

object_pairs_hook=OrderedDict

strict bool If False,
allows control
characters in
strings.
Defaults to
True.

strict = False

json.load()

Example 1

Python ●●●
import json

file = open("data.json")

#deserialize JSON String
json_string = json.load(file)
print(json_string)

#Output
{'firstname': 'Alice', 'lastname': 'Wood', 'country': 'Canada', 'age': 25, 'id':
68392}

Example 2

Python ●●●
import json

#deserialize JSON String
with open("profile.json") as file:
 json_string = json.load(file)

print(json_string)

#Output
{'name': 'Bob', 'email': 'bob@gmail.com', 'profession': 'Data Scientist'}

json.loads()

Python ●●●
import json

json_string = '{"name": "box", "color": "red", "size": 10 }'
decoded = json.loads(json_string)
print(decoded)

#Output
{'name': 'box', 'color': 'red', 'size': 10}

Key Points about json.loads() and json.load()

.json.loads() decodes (deserializes) a JSON string into a Python object ޡ

json.load() loads and decodes a JSON file (or file-like object) into a ޡ
Python object.

,The decoded JSON content is returned as native Python types like dict ޡ
list, str, int, float, bool, or None.

The json.load() method is typically used when working with .json files ޡ
stored on disk.

json.loads() is best used when you have JSON data in string format ޡ
(e.g., from an API or text stream).

,.Both support optional arguments like object_hook, parse_float, cls, etc ޡ
for customizing decoding behavior.

You can use object_hook or object_pairs_hook to convert JSON ޡ
dictionaries into custom Python objects (e.g., namedtuples, classes, etc.).

,.strict=False (optional) allows invalid escape characters in the input (e.g ޡ
unescaped control characters).

If the JSON data is malformed, a json.JSONDecodeError will be raised ޡ
— you should wrap calls in try...except.

Pickle

The pickle module in Python is used for serializing and deserializing Python
objects. While it serves a similar purpose to the json module in that both can
save and load data, pickle is specific to Python and can handle a much wider
range of Python objects, not just dictionaries or key-value pairs.

Unlike JSON (which is a text-based format readable across many
programming languages), pickle saves data in a binary format. This makes it
more powerful for internal use in Python applications, but also less portable.

Key Features of pickle

✏ Allows you to serialize (pickle) and deserialize (unpickle) complex
Python objects (e.g., classes, functions, sets, custom objects).

✏ Offers fast and efficient storage and retrieval of Python objects.

✏ Supports almost all Python data types, including those that JSON cannot
handle like tuples, sets, and class instances.

✏ Stores data in a .pkl or .pickle binary file format.

✏ It is Python-specific — data pickled in Python can't be easily read in
other languages.

Common Pickle Methods

Method Description

json.dump() Serializes (pickles) a Python object and writes it to
a binary file.

json.dumps() Serializes a Python object and returns it as a byte
string.

json.load() Reads a pickled object from a binary file and
deserializes it.

json.loads() Deserializes a pickled object from a byte string.

json.pickler A class used to create a custom pickle writer with
more control.

json.unpickler A class used to create a custom pickle reader for
deserialization.

Writing to a Pickle File (Serializing)

pickle.dump() and pickle.dumps()

Common Parameters

Parameter Description

obj The Python object you want to serialize (convert to binary
format).

file A file-like object opened in binary write mode (wb) where
the data will be written.

protocol (Optional) The protocol version to use. 0–5. By default, it
uses the highest supported protocol.

fix_imports If True (default), makes Python 2-to-3 compatible pickles
(mainly useful when writing Python 3 pickles that should
be readable in Python 2).

buffer_callback (Optional) For out-of-band buffers (used in advanced
scenarios with protocol 5+). Typically not needed unless
working with binary data efficiently.

pickle.dump()

Python ●●●
import pickle

profile = {
 "name" : "Winifred",
 "profile_id": 205,
 "birthday": "10th April, 1998",
 "email": "wini@gmail.com",
 "favorite" : ["nature", "music", "programming"]
}

with open("profile.pickle", "wb") as file:

 pickle.dump(profile, file)

pickle.dumps()

Python ●●●
import pickle

profile = {
 "name" : "Winifred",
 "profile_id": 205,
 "birthday": "10th April, 1998",
 "email": "wini@gmail.com",
 "favorite" : ["nature", "music", "programming"]
}

byte_data = pickle.dumps(profile)

Reading from a Pickle File (Deserializing)

pickle.load() and pickle.loads()

Common Parameters

Parameter Description

file A file-like object opened in binary read mode (rb)
containing pickled data.

data A bytes-like object containing pickled data (e.g., from a file,
network, etc.)

fix_imports For Python 2 compatibility. When True, attempts to map old
module names to new ones.

encoding Only used if the pickled data is from Python 2. Common
options: 'ASCII', 'latin1', 'bytes'.

errors Error handling for decoding non-ASCII bytes. Same as in
standard text decoding.

buffers Optional. Sequence of out-of-band buffers if the object uses
pickle.PickleBuffer. Used for efficient memory handling in
complex objects.

pickle.load()

Python ●●●
import pickle

file = open("profile.pickle", "rb")
data = pickle.load(file)
name = data.get('name')
birthday = data.get('birthday')

email = data.get('email')
favorites = data.get('favorite')

print(name)
print(birthday)
print(email)
print(favorites)

#Output
Winifred
10th April, 1998
wini@gmail.com
['nature', 'music', 'programming']

Note

The profile.pickle file was created using pickle.dump(). To view its
contents, refer to the explanation of pickle.dump().

pickle.loads()

Python ●●●
import pickle
from pathlib import Path

filebytes = Path('profile.pickle').read_bytes()

data = pickle.loads(filebytes)

name = data.get('name')
id = data.get('profile_id')
birthday = data.get('birthday')
email = data.get('email')
favorites = data.get('favorite')

print(name)
print(id)
print(birthday)
print(email)
print(favorites)

#Output
Winifred
205
10th April, 1998
wini@gmail.com
['nature', 'music', 'programming']

SQLite3

Data is a crucial part of any software application. It often works hand in hand
with the logic of a program, which makes it essential to store data persistently
for continued use and reference. This process goes beyond just saving data—
it involves organizing it in a structured manner and managing it efficiently.
This is where database systems come into play.

Almost every application that processes or stores data utilizes a Database
Management System (DBMS)—either built into the app or connected
externally. In Python, several database modules are available to work with
both client-server databases and standalone (embedded) databases.

Examples of Python-compatible database modules include:

sqlite3 (built-in, embedded)

mysql-connector-python (for MySQL)

psycopg2 (for PostgreSQL)

sqlalchemy (ORM that supports multiple DBMS)

pyodbc (for Microsoft SQL Server and others)

Some database modules require external server software (e.g., MySQL,
PostgreSQL), while others like sqlite3 work without any additional
dependencies.

What is SQLite3?

sqlite3 is a lightweight, embedded database engine included in the Python
Standard Library. It doesn't require a separate server or installation. Data is
stored in a local file with the .db or .sqlite extension, making it an ideal
choice for desktop, mobile, or embedded applications where ease of use and

simplicity are a priority.

Key Featured of SQLite3?

✏ No installation required (bundled with Python)

✏ Cross-platform compatibility

✏ Lightweight and fast for small to medium datasets

✏ Great for prototyping and local storage

✏ SQL-compliant with support for standard SQL syntax

✏ Integrated with Python via the sqlite3 module

✏ Data persistence between program executions

✏ File-based storage (no need for a server)

Deep
Before using a database, it's important to design your data model or
structure in advance. This helps ensure efficient data storage and retrieval.
See the sample model below for reference.

SQLite3 Methods

Methods Description

sqlite3.connect(database) Connects to a SQLite database file. Creates
the file if it doesn't exist.

connection.cursor() Returns a Cursor object used to execute SQL
commands.

cursor.execute(sql,
params)

Executes a single SQL statement. Can use
placeholders for parameters.

cursor.executemany(sql,
seq)

Executes the same SQL statement for a
sequence of parameters.

cursor.executescript(script) Executes multiple SQL statements at once
separated by semicolons.

cursor.fetchone() Fetches the next row of a query result set.
Returns a single tuple or None.

cursor.fetchall() Fetches all (remaining) rows of a query result.
Returns a list of tuples.

cursor.fetchmany(size) Fetches the next set of rows (up to size) from
a query result.

connection.commit() Saves (commits) all changes made in the
current transaction.

connection.rollback() Rolls back the current transaction.

cursor.close() Closes the cursor object.

connection.close() Closes the connection to the database.

sqlite3.connect(':memory:') Creates a temporary in-memory database
instead of a file.

sqlite3.Row A row factory that enables name-based access
to columns (like a dictionary).

sqlite3.version Returns the version of the sqlite3 module.

sqlite3.sqlite_version Returns the version of the SQLite engine
itself.

Creating and Connecting to a SQLite Database File

Before data can be stored or accessed, it must first be saved in a database file.
This file acts as the data source for your application. Losing the database file
means losing the stored data, so it's crucial to keep it in a secure location—
ideally within your application folder or a protected storage path.

Syntax

import sqlite3

object = sqlite3.connect("path/to/db_file")

Example,

Python ●●●

import sqlite3

conn = sqlite3.connect("my_database.db")

Key Points

The above code creates a new SQLite database file if it doesn't already ޡ
exist.

If the specified file already exists, the code connects to the existing ޡ
database.

The my_database.db file stores the database in a binary format, including ޡ
tables, records, and other objects.

Creating a Cursor

Once you've successfully connected to a database file, the next step is to
create a cursor. A cursor is used to execute SQL commands and interact with
the database—such as inserting, retrieving, updating, and deleting records

Syntax

object = sqlObject.cursor()

Example,

Python ●●●

import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()

Key Points

.A cursor is an object created from the database connection ޡ

It acts as a control structure that allows you to execute SQL commands ޡ
and fetch data from the result set.

A cursor should be closed (optional but recommended) when no longer ޡ
needed, using cursor.close().

.You can create multiple cursors from the same connection if needed ޡ

Deep
After making changes to a table or records in the database, it's important to
save those changes and properly close the database connection. This is done
using connection.commit() to save the changes and connection.close() to
close the connection to the database.

Querying in SQLite3

To interact with a SQLite3 database, you must write SQL (Structured Query
Language) statements. These statements instruct the database on how to
store, update, retrieve, or delete data. They function much like keywords in
Python—predefined commands that SQLite understands and executes.

Syntax

cursorObject.execute("sql statement", param)
or
cursorObject.executemany("sql statement", [param])
or
cursorObject.executescript(script)

Creating a Table

A database table is similar to a grid consisting of rows and columns. Before
data can be stored, a table must be created with a unique name and structured
columns, each having its own data type.

Syntax

CREATE TABLE IF NOT EXISTS table_name (
 column_name1 DATATYPE PRIMARY KEY,
 column_name2 DATATYPE,
 column_name3 DATATYPE NOT NULL
);

Key Points

IF NOT EXISTS is optional but helps prevent errors if the table already ޡ
exists.
,table_name can be in any case format—uppercase, lowercase ޡ
camelCase, or Capitalized.
.() The column definitions must be enclosed within parentheses ޡ
column_name can be any valid string identifier. It should describe the ޡ
type of data the column will hold.
:Data types in SQLite3 include ޡ

INTEGER → Whole numbers
TEXT → Strings of any length
VARCHAR(n) → Strings with a maximum length n
REAL → Floating-point numbers
BLOB → Binary Large Objects (e.g., images, audio, files)
BOOLEAN → True/False (stored as 0/1 internally)
DATE → Date values
DATETIME → Date and time values

.PRIMARY KEY is optional but helps uniquely identify each record ޡ
NOT NULL means that a column must contain a value and cannot be ޡ
left empty.
.Each column definition ends with a comma, except the last one ޡ

Example: Creating a Student Table

Python ●●●
import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()

cursor.execute('''
 CREATE TABLE IF NOT EXISTS student (
 id INTEGER PRIMARY KEY,
 firstname VARCHAR(100),
 lastname VARCHAR(100),
 year INTEGER NOT NULL,
 department VARCHAR(100),
 course VARCHAR(100)
);
 ''')

Altering Tables

As your application grows, you might need to make changes to your database
structure—such as adding new columns, renaming existing ones, or changing
column data types. SQLite provides the ALTER TABLE command to make
such modifications without recreating the entire table.

Syntax

#--Add a new column
ALTER TABLE table_name ADD COLUMN column_name DATA_TYPE;

#--Rename an existing table
ALTER TABLE old_table_name RENAME TO new_table_name;

#--Rename a column (SQLite 3.25.0+)
ALTER TABLE table_name RENAME COLUMN old_column_name TO
new_column_name;

Key Points

.ALTER TABLE is used to modify the structure of an existing table ޡ

.You can add columns, rename tables, and rename columns ޡ

.You cannot drop a column directly in SQLite ޡ

When adding a column, it must have a default value or allow NULL ޡ
unless values are provided for existing rows.

,Column types must be valid SQLite data types (e.g., TEXT, INTEGER ޡ
REAL, BLOB, NUMERIC).

Deep

DROP TABLE table_name;
Effect: Deletes the entire table including its structure and data.

Example 1, Add a new column

Python ●●●

import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()

cursor.execute('' ALTER TABLE student ADD COLUMN email TEXT '')

.This adds a new column called email to the student table ޡ

Example 2, Rename a table

Python ●●●
import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()

cursor.execute('' ALTER TABLE student RENAME TO student_profile '')

.This renames the student table to student_profile ޡ

Example 3, Rename a column

Python ●●●
import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()

cursor.execute('' ALTER TABLE student RENAME COLUMN lastname
TO surname '')

.This changes the column name lastname to surname ޡ

Adding Records to a Database

After creating the table(s), you can begin inserting records. The INSERT
INTO statement specifies the target table and the corresponding columns
where values should be stored. Each value must match the data type and
order of the specified columns. If a value is not provided for a column,
NULL is automatically inserted—unless the column has a NOT NULL
constraint.

Syntax

INSERT INTO table_name (column1, column2, ...) VALUES (value1,
value2, ...);

Using Parameters(recommended)

cursor.execute("INSERT INTO table_name (column1, column2) VALUES
(?, ?)", (value1, value2))

Example,

Python ●●●
import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()
cursor.execute(
'''INSERT INTO student (id, firstname, lastname, year, department, course)

VALUES (?, ?, ?, ?, ?, ?)''',
 (205, "Alice", "Wood", 3, "Computing", "Computer Science")
)

cursor.execute(
'''INSERT INTO student (id, firstname, lastname, year, department, course)
VALUES (?, ?, ?, ?, ?, ?)''',
 (206, "John", "Crack", 1, "Health", "Nursing"))
conn.commit()

conn.close()

Updating Records in SQLite

If an existing record in the database needs to be changed, the UPDATE
statement is used. You specify the table name, the column(s) to update, the
new values, and a condition (WHERE) to select which rows should be
updated.

Syntax

UPDATE table_name
SET column1 = new_value1, column2 = new_value2
WHERE condition;

Example,

Python ●●●
import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()

cursor.execute(
 '''
 UPDATE student SET year = ? WHERE firstname = ?
 ''',
 (4, "John") #updates year to 4, for student with firstname = “John”
)

cursor.execute(
 '''
 UPDATE student SET firstname = ?, lastname =? WHERE id = ?
 ''',
 ("Marrie","Bridge", 205) #updates firtsname and lastname to Marrie and
Bridge
)

conn.commit() # Save changes
conn.close()

Deleting Records from the Database

Sometimes, records stored in a database may contain errors, become
outdated, or no longer be relevant to the application. SQL provides a simple
and powerful command to delete such records from a table.

Syntax

DELETE FROM table_name; #Empties the table (removes all rows)

DELETE FROM table_name WHERE condition;

Example,

Python ●●●

import sqlite3

conn = sqlite3.connect("datafile.db")
cursor = conn.cursor()

Delete a student record with index 101

cursor.execute("DELETE FROM student WHERE index = ?", (206,))

Delete a student record with lastname Crack

cursor.execute("DELETE FROM student WHERE lastname = ?",

("Crack",))

Save changes

conn.commit()

conn.close()

Key Points:

.DELETE FROM specifies the table where the record should be removed ޡ

.WHERE ensures only matching rows are deleted ޡ

.Omitting WHERE deletes all rows from the table – use with caution ޡ

.Always commit your changes using conn.commit() after deleting records ޡ

Fetching Data from a Database

Fetching data refers to retrieving records stored in a database for use within a
program. This process is essential, as most applications rely on stored data
for displaying information, applying configurations, providing feedback, and
general application logic. Depending on the requirement, you can retrieve all
records at once, a specified number of records, or just a single record.

Syntax

records = cursor.fetchall() # Fetches all rows from the last executed
query
records = cursor.fetchmany(size) # Fetches the next 'size' number of rows
record = cursor.fetchone() # Fetches the next single row

Key Points

These methods are used after executing a SELECT query with ޡ
cursor.execute().

.fetchall() retrieves all results at once and stores them in a list of tuples ޡ

fetchmany(size) retrieves the next set of rows (as specified by size) and is ޡ
memory-efficient for large datasets.

fetchone() returns the next single row and is useful when expecting only ޡ
one result or reading results one at a time.

If no more rows are available, fetchone() and fetchmany() return None ޡ
and an empty list respectively.

SQL Commands for Fetching Records

SQL provides several commands for retrieving data from a database. These
commands fall under the Data Query Language (DQL) category and are
mainly used with the SELECT statement. Below are grouped and described
commands commonly used for fetching records:

① Basic SELECT Commands

Commands Description

SELECT * FROM table_name; Fetches all columns and rows from
the specified table.

SELECT column1, column2 FROM
table_name;

Fetches specific columns from the
table.

SELECT DISTINCT column FROM
table_name;

Fetches unique (non-duplicate)
values from a column.

Example 1, Fetches all columns and rows from the specified table.

Python ●●●
import sqlite3

conn = sqlite3.connect("myfile.db")
cursor = conn.cursor()
cursor.execute("SELETE * FROM student ")
records = cursor.fetchall()
print(records)

#Output
[(205, 'Marrie', 'Bridge', 2, 'Health', 'Optometry'), (206, 'John', 'Crack', 1,
'Health', 'Nursing'), (207, 'Bob', 'Orwell', 1, 'Computing', 'Cybersecurity'),
(208, 'Derrick', 'Rich', 4, 'Engineering', 'Electrical'), (209, 'Winifred',
'Smith', 1, 'Engineering', 'Aerospace'), (301, 'Williams', 'White', 3,
'Computing', 'Computer Science'), (303, 'Kelvin', 'Wood', 3, 'Health',
'Nursing')]

Deep

The results returned from an SQL query in Python are typically presented
as a list of tuples. While these results can be used for various purposes in
your program, they may not be visually appealing when printed directly. To

improve readability and present the data in a clean, table-like format, you
can use the tabulate module.
You can install it using the command: pip install tabulate

Example 2, Tabulated results with the tabulate module

Python ●●●
import sqlite3
from tabulate import tabulate

conn = sqlite3.connect("myfile.db")
cursor = conn.cursor()
cursor.execute("SELECT * FROM student ")
records = cursor.fetchall()

#retrieving individual records
print(records[1])
print(records[2][1])

#tabulating the results
header = ["id", "firtsname", "lastname", "year", "department", "course"]
print(tabulate(records, headers=header, tablefmt="grid"))

#Output

(206, 'John', 'Crack', 1, 'Health', 'Nursing')
Bob

id firstname lastname year department course

205 Marrie Bridge 2 Health Optometry

206 John Crack 1 Health Nursing

207 Bob Orwell 1 Computing Cybersecurity

208 Derrick Rich 4 Engineering Electrical

209 Winifred Smith 1 Engineering Aerospace

301 Williams White 3 Computing Computer
Science

303 Kelvin Wood 3 Health Nursing

Example 3, Fetches specific columns from the table.

Python ●●●
import sqlite3
from tabulate import tabulate

conn = sqlite3.connect("myfile.db")
cursor = conn.cursor()

cursor.execute("SELECT firstname, lastname, course FROM student ")
records = cursor.fetchall()

header = ["id", "firtsname", "lastname", "year", "department", "course"]
print(tabulate(records, headers=header, tablefmt="grid"))

#Output

firstname lastname course

Marrie Bridge Optometry

John Crack Nursing

Bob Orwell Cybersecurity

Derrick Rich Electrical

Winifred Smith Aerospace

Williams White Computer Science

Kelvin Wood Nursing

② SELECT with Conditions (Filtering Data)

Commands Description

SELECT * FROM table_name
WHERE condition;

Fetches rows that meet a specified
condition.

SELECT * FROM table_name
WHERE column = value;

Fetches rows where the column
matches a value.

SELECT * FROM table_name
WHERE column LIKE pattern;

Fetches rows using pattern matching
(e.g., 'A%' for names starting with
'A').

SELECT * FROM table_name
WHERE column IN (val1, val2);

Fetches rows where column matches
any value in a list.

SELECT * FROM table_name
WHERE column BETWEEN val1
AND val2;

Fetches rows with values within a
range.

Example 1, Fetches rows that meet a specified condition.

Python ●●●

cursor.execute("SELECT * FROM student WHERE id >= ? ", (300,))

#Output

id firstname lastname year department course

301 Williams White 3 Computing Computer
Science

303 Kelvin Wood 3 Health Nursing

Example 2, Fetches all columns and rows from the specified table.

Python ●●●

cursor.execute("SELECT * FROM student WHERE department = ? ",
('Engineering',))

#Output

id firstname lastname year department course

208 Derrick Rich 4 Engineering Electrical

209 Winifred Smith 1 Engineering Aerospace

Example 3, Fetches rows using pattern matching.

Python ●●●

cursor.execute("SELECT * FROM student WHERE course LIKE ? ",
('C%',))

#Output

id firstname lastname year department course

207 Bob Orwell 1 Computing Cybersecurity

301 Williams White 3 Computing Computer
Science

Example 4, Fetches rows where column matches any value in a list.

Python ●●●

cursor.execute("SELECT * FROM student WHERE year IN (?, ?) ", (2,
4))

#Output

id firstname lastname year department course

205 Marrie Bridge 2 Health Optometry

208 Derrick Rich 4 Engineering Electrical

③ SELECT with Sorting and Limiting

Commands Description

SELECT * FROM table_name
ORDER BY column ASC;

Fetches data sorted by a column in
ascending order.

SELECT * FROM table_name
ORDER BY column DESC;

Fetches data sorted by a column in
descending order.

SELECT * FROM table_name
LIMIT number;

Limits the number of rows returned.
Useful for pagination or previewing
results.

Example 1, Fetches rows where column matches any value in a list.

Python ●●●

cursor.execute("SELECT * FROM student ORDER BY id DESC ")

#Output

id firstname lastname year department course

303 Kelvin Wood 3 Health Nursing

301 Williams White 3 Computing Computer
Science

209 Winifred Smith 1 Engineering Aerospace

208 Derrick Rich 4 Engineering Electrical

207 Bob Orwell 1 Computing Cybersecurity

206 John Crack 1 Health Nursing

205 Marrie Bridge 2 Health Optometry

Note

In the examples above, we used cursor.execute() both with and without
parameters. It can be tricky when passing a single string as a parameter. If a
comma (,) is not included at the end of the string, it may raise an error
because Python does not recognize it as a tuple.

cursor.execute("SELECT * FROM student WHERE lastname = ?",
("Smith",))

Note the comma after "Smith" — without it, the value is treated as a string,
not a tuple, which can lead to unexpected behavior or errors.

④ SELECT with Aggregates (Summarizing Data)

Commands Description

SELECT COUNT(*) FROM
table_name;

Returns the total number of rows.

SELECT MAX(column) FROM
table_name;

Returns the maximum value in a
column.

SELECT MIN(column) FROM
table_name;

Returns the minimum value in a
column.

SELECT AVG(column) FROM
table_name;

Returns the average value of a
column.

SELECT SUM(column) FROM
table_name;

Returns the sum of a numeric
column.

Python ●●●

cursor.execute("SELECT COUNT(*) FROM student ")
print(f"Count: {cursor.fetchall()[0][0]}")

cursor.execute("SELECT MIN(year) FROM student ")
print(f"Minimum Year: {cursor.fetchall()[0][0]}")

cursor.execute("SELECT MAX(year) FROM student ")
print(f"Maximum Year: {cursor.fetchall()[0][0]}")

cursor.execute("SELECT SUM(id) FROM student ")
print(f"Total ID: {cursor.fetchall()[0][0]}")

cursor.execute("SELECT AVG(id) FROM student ")
print(f"Average: {cursor.fetchall()[0][0]}")

#Output
Count: 7
Minimum Year: 1
Maximum Year: 4
Total ID: 1639
Average: 234.14285714285714

⑤ SELECT with Grouping (Grouped Data Analysis)

Commands Description

SELECT column, COUNT(*)
FROM table_name GROUP BY
column;

Groups records and applies
aggregate functions.

SELECT column, COUNT(*)
FROM table_name GROUP BY
column HAVING COUNT(*) > 1;

Filters groups using aggregate
condition (like WHERE but for
groups).

Example 1, Groups records and applies aggregate functions.

Python ●●●

cursor.execute("SELECT COUNT(*), department FROM student GROUP
BY department")

#Output

COUNT(*) department

2 Computing

2 Engineering

3 Health

Text to Speech (pyttsx3)

Text-to-speech (TTS) has become an essential feature in mobile, web, and
desktop applications, offering accessibility, user convenience, and
automation. This functionality is based on the concept of converting written
text into spoken audio. Its counterpart, speech-to-text, converts spoken words
into written text and typically relies on machine learning or AI-powered
models.

In Python, pyttsx3 is a popular offline module used for text-to-speech
conversion. Unlike cloud-based solutions, pyttsx3 works without an internet
connection, making it ideal for local applications.

Installation

The pyttsx3 module is not included in the standard Python library. You can
install it via pip:

$ pip install pyttsx3

Why Use Text-to-Speech in Applications

✏ Enhances accessibility for visually impaired users.

✏ Improves user interaction through voice-enabled responses.

✏ Useful in virtual assistants and chatbots.

✏ Can generate audio for learning tools or audiobooks.

✏ Allows dynamic content to be voiced without pre-recorded audio.

✏ Supports multiple voices and adjustable speech rate for customization.

✏ Works offline, ensuring privacy and speed in local applications.

Text-to-Speech Methods

Methods Description

pyttsx3.speak(text) Method to queue text to be spoken

pyttsx3.init() Function used to initialize the TTS engine

pyttsx3.engine Controls voice, speech rate, volume, and queues text
for speaking

pyttsx3.driver Manages speech synthesis under the hood (e.g., 'sapi5',
'espeak', 'nsss')

pyttsx3.weakref Used internally in pyttsx3 for memory management
without affecting object lifecycle

pyttsx3.speak(text)

pyttsx3.speak(text) takes the provided text and converts it into spoken audio
using the system's speech engine.

Python ●●●
import pyttsx3 as sp

text = "Hello Pythonist!, do you want some coffee?"
speech = sp.speak(text)

#Output

ᐱ

Note

The above code generates either a male or female voice that reads the text
aloud when executed. The speech can be heard through your device’s
speakers.

pyttsx3.init()

The init() function initializes the text-to-speech engine and returns an engine
object. This object can be used not only to generate speech from text, but also

to customize the speech experience—such as changing the voice, adjusting
the pitch and volume, saving audio to a file, and more.

The init() Methods

Methods Description

connect() Registers a callback function for specific engine events like
started-utterance

disconnect() Unregisters a callback from the event loop

endLoop() Ends the event loop started by startLoop()

getProperty() Gets properties such as 'rate', 'volume', or 'voice'

isBusy() Returns True if the engine is still processing speech

iterate() Yields the next event (used internally in async speech
synthesis)

proxy() Internal use for proxying engine method calls (less
commonly used directly)

runAndWait() Starts speech processing and waits for all queued
commands to finish

save_to_file() Saves spoken text to an audio file (e.g., .mp3 or .wav)

say() Queues text to be spoken

setProperty() Sets speech properties like 'rate', 'volume', or 'voice'

startLoop() Starts a non-blocking event loop for speech synthesis

stop() Stops current speech and clears the queue

say(text)

Python ●●●
import pyttsx3 as sp

engine = sp.init()
text = "There is nothing much better than coding in peace"
engine.say(text= text)

print(engine.isBusy())
engine.runAndWait()

#Output

True

ᐱ

runAndWait() → Runs the speech engine until all commands are ޡ
processed.

.isBusy() → Returns True if the engine is currently speaking ޡ

Getting Properties

The getProperty() method in pyttsx3 allows you to access different attributes
of the speech engine. These include voice settings, speech rate, and volume,
among others.

① Voices

getProperty("voices")

Python
import pyttsx3 as sp

engine = sp.init()
voices = engine.getProperty("voices")
print(voices)

print(f"first_voice_name = {voices[0].name}")
print(f"second_voice_name = {voices[1].name}")
print(f"first_voice_id = {voices[0].id}")
print(f"second_voice_id = {voices[1].id}")

#Output
[<pyttsx3.voice.Voice object at 0x000001E2500F67B0>, <pyttsx3.voice.Voice object at
0x000001E25007F750>]

first_voice_name = Microsoft David Desktop - English (United States)

second_voice_name = Microsoft Zira Desktop - English (United States)

first_voice_id =
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-
US_DAVID_11.0

second_voice_id =
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-
US_ZIRA_11.0

This returns a list of available voice objects on the system. Each voice has
properties such as id, name, languages, and gender. On Windows, pyttsx3
typically comes with two default voices: one male and one female (e.g.,
Microsoft David and Microsoft Zira).

② Volume

getProperty("volume")

Python ●●●
import pyttsx3 as sp

engine = sp.init()
volume = engine.getProperty("volume")
print(f" volume level :{volume}")

#Output
volume level :1.0

This returns the current volume level of the speech engine. Volume is a
floating-point number between 0.0 (mute) and 1.0 (maximum).

③ Rate

getProperty("rate")

Python ●●●
import pyttsx3 as sp

engine = sp.init()
rate = engine.getProperty("rate")
print(f" rate :{rate}")

#Output
rate :200

This returns the current speech rate (words per minute). The default value
typically ranges between 150 and 200.

Setting Properties

After retrieving the engine’s properties using getProperty(), you
can customize them using engine.setProperty(name, value)

setProperty(name, value)

Python ●●●
import pyttsx3 as sp

engine = sp.init()

Set voice
voices = engine.getProperty("voices")
engine.setProperty("voice", voices[1].id)

Set volume
engine.setProperty("volume", 0.9)

Set rate
engine.setProperty("rate", 180)

Speak
engine.say("Hello, this is a customized voice!")
engine.runAndWait()

#Output

ᐱ

Saving Speech to an Audio File

pyttsx3 allows you to convert text to speech and save the spoken audio
directly to a file. This is useful for generating voice messages, narrations, or
offline audio files from written content.

Supported Audio Formats

pyttsx3 typically supports WAV format by default, as it uses the underlying
text-to-speech engine of the system (such as SAPI5 on Windows). Other
formats like MP3 or OGG are not natively supported directly by pyttsx3. If
you need other formats, consider saving as .wav and converting later using
external libraries like pydub or ffmpeg.

save_to_file(text, filename)

Python ●●●
import pyttsx3

engine = pyttsx3.init()

text = "Heya! Hope you're loving it. Keep Pythonizing."

Save speech to WAV audio file
engine.save_to_file(text, "output.wav")

engine.runAndWait()

Always call engine.runAndWait() after save_to_file() to ensure the audio ޡ
is properly written.

QR Code

A QR Code (Quick Response Code) is a type of matrix barcode (or two-
dimensional barcode) that stores information as a pattern of black-and-white
squares. While the pattern may look random, it is a structured visual code that
can hold various types of data such as:

URLs or website links
Text messages
Contact details (vCards)
Wi-Fi login credentials
Emails and phone numbers
Calendar events
Geolocation (latitude and longitude)
App download links
Product or payment information

This information can be quickly retrieved by scanning the QR
Code using a smartphone camera, QR scanner, or barcode reader.
Python provides a handy library called qrcode to easily generate
QR codes from custom content.

Installation

$ pip install qrcode

Why Use QR Codes?

✏ To embed URLs or web links
✏ To store and share plain text messages
✏ For secure authentication (e.g., two-factor authentication codes)
✏ To share Wi-Fi network credentials without typing
✏ To store contact information (e.g., name, phone number, email)
✏ For event invitations or calendar scheduling
✏ In product packaging for more information or support
✏ For quick app downloads or installation instructions

The qrcode Methods

Methods Description

qrcode.make(data) A shortcut function that takes data (string) and
returns a QR Code image. Useful for quick QR
code generation.

qrcode.image Provides different backends for generating image
outputs like PIL (Pillow). You can subclass it to
use a custom image factory.

qrcode.main The primary module with user-friendly functions
like make() that simplifies creating QR codes with
just one line of code.

qrcode.run_example() A built-in demonstration function that generates a
sample QR code when run. Useful for testing and
seeing default behavior.

qrcode.base Contains the core QRCode class used for creating
and configuring QR codes. It handles the data
input, version, error correction level, box size, and

border.

qrcode.compat Provides compatibility functions between Python 2
and 3. This is mainly used internally and not
commonly accessed directly.

qrcode.constants Holds constants used by the QRCode generator
such as error correction levels (e.g.,
ERROR_CORRECT_L, ERROR_CORRECT_M,
ERROR_CORRECT_Q, ERROR_CORRECT_H).

qrcode.exceptions Defines custom exceptions used in the QR code
process. Helps catch specific QR code generation-
related errors.

qrcode.util Contains utility functions used internally like
matrix creation, bit buffer handling, and version
checks. Typically not used directly by most users.

qrcode.make()

The make() method is a high-level convenience function provided by the
qrcode module. It is used to quickly generate a QR code from simple data
such as a string, URL, or message. This method is ideal when you don’t need
to customize the QR code's appearance or settings extensively. It
automatically chooses the best-fit version and error correction level for the
data.

Parameters

data → The main content (text, URL, etc.) to encode into the
QR code. This is a required parameter.

image_factory → (Optional) A custom image factory used to generate
the image. For example, qrcode.image.pil.PilImage
(default) or SVG-based factories.

version → (Optional) Specifies the size/version of the QR code.
Ranges from 1 to 40. If not provided, it's auto-
calculated.

error_correction → (Optional) Sets the error correction level. Values can
be qrcode.constants.ERROR_CORRECT_L, M, Q,
or H.

box_size → (Optional) The number of pixels for each box of the
QR code grid. Affects the image resolution.

border → (Optional) The thickness of the border (number of
boxes thick). Default is 4, which is the minimum
required.

Example 1,

Python ●●●
import qrcode

image = qrcode.make("https://google.com")

image.save("mycode.png")

#Output

Example 2, Changing size of the box

Python ●●●
import qrcode

image = qrcode.make("Hello, fellow Pythonist - this is my page",
box_size= 50)
image.save("mycode.jpg")

#Output

Adding Colors to the Image

Example ,

Python ●●●
import qrcode

data = "https://www.example.com"

Create a QRCode object
qr = qrcode.QRCode(
 version=1,
 box_size=10,
 border=5
)

qr.add_data(data)
qr.make(fit=True)

Generate an image with custom fill and background colors
img = qr.make_image(fill_color="orange", back_color="white")

Save the image
img.save("myqrcode.jpg")

#Output

.fill_color → The color of the actual QR code (default is black) ޡ

.back_color → The background color (default is white) ޡ

You can use color names ("red", "green"), hex codes ("#ff5733"), or ޡ
RGB tuples ((255, 0, 0)).

Yagmail

Yagmail is a powerful and easy-to-use Python library for sending emails. It
simplifies the process of composing and delivering emails by wrapping
around Python’s built-in smtplib, making it ideal for developers who want to
send text, HTML content, or files like PDFs and images without dealing with
low-level configurations.

Installation

Yagmail can be installed using pip, just like most other Python libraries

$ pip install yagmail

Key Features of Yagmail

✏Easy Email Sending
Send emails with a few lines of Python code.

✏ Rich Content Support
Supports plain text, HTML, and mixed content emails.

✏ File Attachments
Easily attach files like PDFs, images, or documents.

✏ Multiple Recipients

Send emails to one or multiple recipients at once.

✏ Secure Authentication
Uses keyring for secure credential storage or supports login per session.

✏ Inline Images
Embed images directly in the email body.

✏ Readable Syntax
Clean, Pythonic syntax that’s beginner-friendly.

✏ SMTP Configuration
Easily connect to Gmail, Outlook, or any custom SMTP server.

✏ Auto-Signature Support
Supports default signatures and reusable templates.

Yagmail Methods

Methods Description

yagmail.SMTP The main class for initializing an email session and
sending messages. It wraps around the standard SMTP
protocol with added convenience.

yagmail.compat Handles compatibility between different Python
versions to ensure smooth operation.

yagmail.dkim (DomainKeys Identified Mail) Handles cryptographic
email verification for enhanced email authentication.

yagmail.error Contains custom exceptions and error handling specific

to Yagmail operations.

yagmail.headers Manages and formats email headers such as Subject,
From, To, etc.

yagmail.inline Allows embedding images or other media within the
body of the email (inline attachments).

yagmail.logging Internal logging module used for debugging and
tracking email sending activity.

yagmail.message Constructs the email content including body, subject,
attachments, etc.

yagmail.oauth2 Provides OAuth2-based authentication support
(especially for Gmail or Google Apps users).

yagmail.password Manages and retrieves stored passwords securely from
the system's keyring or other sources.

yagmail.raw Sends raw email content directly, used for more
customized or low-level email structures.

yagmail.register Used to register user credentials with Yagmail
(especially to use stored credentials via keyring).

yagmail.sender Handles sending logic for messages, used internally by
the SMTP object.

yagmail.utils Utility functions that support parsing, formatting, and
general tasks.

yagmail.validate Validates email addresses, parameters, and content
before sending.

Note

Gmail and other email providers often require enhanced security when
accessing email through third-party apps or programs. Instead of using your
actual email password, you should enable Two-Factor Authentication
(2FA) and generate an App Password specifically for the application.
For Gmail users, you can generate an App Password by visiting:
https://myaccount.google.com/apppasswords
Use this App Password when registering your email with Yagmail instead
of your regular email password.

Sending Messages with Yagmail

yagmail.SMTP()

To send emails using Yagmail, you start by creating an instance of the SMTP
class:

Parameters

user → The email address you want to send from. This
can also be an alias registered with Yagmail via
yagmail.register().

https://myaccount.google.com/apppasswords

password → (Optional) The password for the email account.
If not provided, Yagmail will try to fetch it
securely from the system keyring.

host → (Optional) The SMTP server host (e.g.,
smtp.gmail.com). If not specified, Yagmail auto-
detects based on the email domain.

port → (Optional) The SMTP port number. Default is
587 for TLS, or 465 for SSL.

smtp_starttls → (Optional) Set to True or False to enable or
disable STARTTLS encryption.

smtp_ssl → (Optional) Set to True to connect via SSL.
Typically used when port 465 is set.

smtp_set_debuglevel → (Optional) Sets debug output level. 0 = silent, 1
= verbose logging.

encoding → (Optional) Sets the character encoding. Default
is 'utf-8', which supports international
characters.

smtp_skip_login → (Optional) If True, skips the SMTP login step.
Useful if authentication is not required.

Basic Email Sending

Syntax

yag = yagmail.SMTP("username@mail.com", "app_password")

yag.send(
 to = "recipient@mail.com",
 subject = "email subject",
 contents = "your message"
)

Other Parameters of the send() Method

In addition to the required fields like to, subject, and contents,
the send() method in Yagmail supports several optional
parameters to enhance functionality:

attachments: Any – Files to be attached to the email.

cc: Any – Carbon copy recipients.

bcc: Any – Blind carbon copy recipients.

preview_only: bool – If set to True, the email will be printed to the
console instead of being sent.

headers: Any – Additional custom headers for the email.

prettify_html: bool – If True, formats HTML content for better
readability.

message_id: Any – Custom message ID for the email.

group_messages: bool – Allows grouping of similar messages to
reduce duplication.

Example1,

Python ●●●
import yagmail

yag = yagmail.SMTP("alice@gmail.com", "ali_xyz")

yag.send(
 to = "john@gmail.com",
 subject = "Greetings",
 contents = "Hello John, how is your morning?"
)

Example2,

Python ●●●
import yagmail

email = "oliviabridge@gmail.com"
password = "gen_pass_from_google"
message = '''
 Hello Irene,
 I just wanted to check up on you.
 Have a blessed day.

 Best regards,
 Olivia Bridge.
 '''
yag = yagmail.SMTP(email, password)

yag.send(
 to = "irene@outlook.com",
 subject = "Friends Duty",
 contents = message
)

Sending Email With Attachments

Example1 ,

Python ●●●
import yagmail

yag = yagmail.SMTP("bob@gmail.com", "my_gen_app_pass_google")

image = "pictures/birthday_image.png"
yag.send(
 to = "gloria@gmail.com",
 subject = "Birthday Wishes",
 contents = "Happy Birthday Buddy.!",
 attachements = image
)

Example1 , Sending Multiple Files

Python ●●●
import yagmail

yag = yagmail.SMTP("steve@gmail.com", "pass_google_app_pass")

attach = ["pictures/site.png", "project.pdf", "credentials.docx"]
yag.send(
 to = "director@gmail.com",
 subject = "Agenda",
 contents = "Attached are copies of received documents.",
 attachements = attach
)

Sending Email With HTML Content

Example ,

Python ●●●
import yagmail

yag = yagmail.SMTP("marrie@gmail.com", "mar_@_r")

html_content = "<h1>Hello</h1><p>This is a HTML email</p>"

yag.send(
 to = "buddy@gmail.com",
 subject = "HTML Message",
 contents = html_content
)

Sending Email With Inline Image

Example,

Python ●●●
import yagmail

yag = yagmail.SMTP("steve25@gmail.com", "gen_google_app_pass")

yag.send(
 to = "director@gmail.com",
 subject = "Agenda",
 contents = [
 "Hi Boss, check out this image: ",
 yagmail.inline("doc/site_plan.jpg"),
]
)

Faker – Generating Fake Data

In programming and software testing, it is often necessary to
generate large amounts of sample data. Manually creating this data
can be tedious and error-prone. The faker module in Python
provides a convenient way to generate realistic fake data such as
names, email addresses, phone numbers, addresses, dates, CSV
data, and much more.

It is especially useful for:

Testing databases
Creating mock APIs
Prototyping applications
Populating UI elements with realistic-looking data

Installation

To install Faker, use the following command:

$ pip install faker

Why Use Faker?

Using Faker offers several advantages during development, testing, and
prototyping. Here are some key reasons to use it:

✏ Eases Data Guesswork

No need to manually guess or create fake data — Faker generates it
instantly.

✏ Provides Templated Data
Faker follows consistent templates for generating realistic data,
such as emails, phone numbers, names, etc.

✏ Speeds Up Development
Quickly populate your app or database with mock data to test logic
and UI.

✏ Serves as Placeholders
Use generated data as temporary placeholders until real data is
available.

Faker Methods

Methods Description

Faker Main class used to generate fake data. You typically
instantiate this class (Faker()) to access all fake data methods
(like .name(), .email())

Factory Internal utility used to create and manage Faker instances. It
handles locale settings and initializes the Faker environment.

Generator The core engine behind data generation. It manages the
actual logic and calls to data providers. Developers rarely use
this directly.

config Contains configuration settings for Faker, such as default
locales or seeding options.

decode Handles decoding operations (e.g., Unicode or encoded

content). Typically used internally.

exceptions Manages all exception classes used in Faker, such as
UnsupportedLocaleError.

factory Similar to Factory, this module assists in creating Faker
instances, usually invoked behind the scenes.

generator The module containing the Generator class. Handles the
actual mechanics of how data is randomly selected from
providers.

providers This is where all the fake data providers live — name,
address, email, job, etc. You can even add custom providers
here.

proxy Used for dynamic attribute access. Supports lazy loading of
certain components.

typing Contains type hints and annotations to help with static type
checking (introduced for better code clarity and IDE support)

utils A helper module with utility functions like string formatting,
randomizers, and helper tools used by providers and core
components.

Generating Faker Data

The faker module offers a wide range of pre-defined methods

through the Faker() class that can be used to generate various types
of fake data — such as names, addresses, emails, jobs, and more.
These methods are extremely useful for testing, prototyping, or
populating databases with placeholder data.

Some of these methods accept optional parameters to customize the output
(e.g., locale, gender, or formatting), while others work perfectly without any
arguments.

Below is a list of some commonly used methods available in the
Faker() class:

binary add_provider administrative_unit building_number

boolean date_between date_time_between_dates ascii_email

bothify date_this_century rgb_color ascii_free_email

ssn date_this_decade domain_word ascii_safe_email

csv date_this_month android_platform_token bank_country

currency date_this_year ascii_company_email country_code

address future_datetime image company_suffix

century generator_attrs image_url credit_card_full

chrome get_arguments year company_email

city get_formatter zip color_rgb_float

city_prefix get_providers basic_phone_number cache_pattern

city_suffix get_words_list domain_name catch_phrase

color ipv4 country_calling_code currency_code

color_hsl suffix postcode_in_state currency_name

color_hsv ipv4_private credit_card_expire currency_symbol

color_name ipv4_public texts current_country

color_rgb ipv6 credit_card_number date_time_between

file_path isbn10 credit_card_provider ipv4_network_class

company isbn13 credit_card_security_code date_time_this_century

coordinate profile cryptocurrency date_time_this_decade

country provider cryptocurrency_code date_time_this_month

am_pm providers cryptocurrency_name date_time_this_year

bban psv current_country_code passport_full

date pybool random_digit_above_two passport_gender

dsv pydecimal random_digit_not_null passport_number

ean pydict mac_address passport_owner

ean13 pyfloat random_digit_or_empty password

ean8 pyint random_element past_date

ein pyiterable random_elements past_datetime

email pylist free_email phone_number

emoji pyobject free_email_domain port_number

enum pyset future_date postalcode

factories state hex_color state_abbr

day_of_week state_abbr hexify street_address

del_arguments street_address random_elements street_name

items street_name random_digit_above_two street_suffix

itin street_suffix first_name paragraphs

job suffix first_name_female suffix_female

job_female suffix_female first_name_male suffix_male

job_male suffix_male first_name_nonbinary suffix_nonbinary

json suffix_nonbinary month_name file_extension

language_code name sentence text

language_name name_female sentences time

last_name name_male state passport_dates

last_name_female license_plate swift passport_dob

Deep

You can explore even more by running:

>>> from faker import Faker
>>> fake = Faker()
>>> print(dir(fake)) # List all available methods
…… [………..]

Example 1, Generating fake emails and words

Python ●●●
>>> import faker
>>> fake = fake.Faker()
>>> email = fake.email(domain = "gmail.com")
>>> print(email)
…… 'elizabethburke@gmail.com'

>>> email = fake.email(domain = "outlook.com")
>>> print(email)
…… 'matthew25@outlook.com'

>>> sentence = fake.sentence()
>>> print(sentence)
…… 'Begin sport ten by activity run really heart.'

>>>>>> emoji = fake.emoji()
>>> print(emoji)
…… '⌧'
>>>

Example 2, Generating fake addresses

Python ●●●
>>> from faker import Faker
>>> fake = Faker()
>>> address = fake.address()
>>> print(address)
…… '66584 Spence Squares Suite
139
 Johnhaven, PR 26380'

>>> address = fake.address()
>>> print(address)
…… '98567 Mccormick Lodge
 Lake Ashleyland, VT 04829'

Python ●●●
>>> fake.state()
…… 'Florida'
>>> fake.zipcode()
…… '76665'
>>> fake.street_name()
…… 'Bradley Highway'
>>> fake.street_address()
…… '9227 Galloway Landing'
>>> fake.postalcode()
…… '58553'
>>> fake.phone_number()
…… '914-209-0864'

Example 3, Generating fake identity

Python ●●●
>>> import faker
>>> fake = fake.Faker()
>>> name = fake.name()
>>> print(name)
…… 'Colleen Williams'

>>> fake.name_female()

Python ●●●
>>> fake.country()
…… 'Switzerland'
>>> fake.ssn()
…… '330-84-1846'
>>> fake.passport_number()
…… '955631232'
>>> fake.passport_dob()

…… 'Sabrina Higgins'
>>> fake.password()
…… '$4X(RXyiFb'
>>> fake.city()
…… 'South Barbaraton'
>>> fake.currency()
…… ('AED', 'United Arab
Emirates dirham')
>>> fake.company()
…… 'Reid LLC'

…… datetime.date(1955, 9, 28)
>>> fake.passport_owner()
…… ('Rebecca', 'Hamilton')
>>> fake.ipv4()
…… '143.13.3.56'
>>> fake.credit_card_number()
…… '6011167979221760'
>>> fake.credit_card_provider()
…… 'Mastercard'

Emoji

Human communication is multifaceted, encompassing text, speech, visuals,
gestures, images, symbols, and more. While visual communication—such as
images—can often convey meaning more effectively than plain text, it's not
always practical. For example, when dealing with small-sized messages or
limited bandwidth, sending full images becomes less feasible.

This is where emojis come in. Emojis are compact, expressive text-based
visuals formed using Unicode characters. They allow users to convey
emotion, context, or tone quickly and efficiently—without needing large files
or complex graphics.

In Python, the emoji module provides functionality for:

Converting text or keywords into emojis

Converting emojis back to their names

Handling Unicode emoji characters programmatically

Installation

You can install the emoji module using pip:

$ pip install emoji

Why the Need for Emojis in Programming?

Emojis aren't just for fun—they serve practical purposes in programming as
well:

✏ Enhance User Interface
Emojis can make UIs (especially chat apps, dashboards, and notifications)
more expressive and engaging.

✏ Convey Emotions & Context
Emojis help convey the tone of a message without extra text.

✏ Reduce Text Length
A single emoji can replace several words (e.g., ۗ instead of "I agree").

✏ Improve Readability
They break monotony in long texts or logs and highlight key points.

✏ Placeholders in Testing
Useful in testing emoji-related features or generating placeholder text.

✏ Cross-Platform Consistency
Unicode-based emojis look similar across systems and devices.

Emoji Methods

Methods Description

emojize(text) Converts emoji names (e.g., :smile:) to actual
emojis.

demojize(text) Converts emojis in the given text to their

descriptive names (e.g., 'ਏ' → ':smile:').

config Contains configuration settings for the emoji
module.

core Core internal functions used by the module
(not often used directly).

distinct_emoji_list(text) Returns a list of unique emojis found in the
text.

emoji_count(text) Returns the number of emojis in a given
string.

emoji_list(text) Returns a list of all emojis found in the text
along with their positions.

get_emoji_by_name(name) Returns the emoji corresponding to a name
like 'thumbs_up'.

is_emoji(text) Returns True if the character is a valid emoji.

load_from_json(file) Loads custom emoji data from a JSON file.

purely_emoji(text) Checks whether a string consists only of
emojis.

replace_emoji(text,
replace)

Replaces all emojis in the text with the given
replacement.

tokenizer(text) Tokenizes the text into emojis and words for

analysis.

unicode_codes Contains mappings between emoji names and
Unicode points.

version Returns the version of the emoji module being
used.

Emoji Names in Python

Each emoji can be referenced either by its Unicode character or by a
descriptive name wrapped in colons (e.g., :smile:). Using Unicode directly
works in many environments, but using the emoji name is more readable and
maintainable—especially in dynamic or multilingual applications.

Python’s emoji module provides a powerful function called
emojize() that converts emoji names into actual emojis.

Using emoji.emojize()

The emojize() function takes in a string containing emoji names in a specific
format and returns a string with the corresponding emojis.

Example1

Python ●●●
import emoji

Basic usage with default delimiters (: :)
print(emoji.emojize("Python is fun :snake:"))

#Output

Python is fun ⣽

Example2

Python ●●●
import emoji

Using alias names (like `:thumbsup:` instead of `:thumbs_up:`)
print(emoji.emojize("I'm great :thumbsup:", language='alias'))

#Output

I'm greatۗ

Example 3

Python ●●●
import emoji

Specifying a text-based emoji variant (some platforms support this)
print(emoji.emojize("planet :sun_with_face: :ringed_planet:",
variant="text_type"))

#Output

planet ⥥

Example 4

Python ●●●
import emoji

Specifying an emoji variant (default is usually emoji-style)
print(emoji.emojize("Congrats :party_popper: :fireworks:",
variant="emoji_type"))

#Output

Congrats ᅁ ᄲ

Example 5

Python ●●●
import emoji

Using custom delimiters, like curly braces
print(emoji.emojize("Sports is life:{basketball}{soccerball}", delimiters=("
{" , "}")))

#Output

Sports is life:ᅿ⚽

Key Points

.Default delimiters are : for both sides (e.g., :rocket:) ޡ
.language='alias' allows common names like :thumbsup:, :smile:, etc ޡ
variant='text_type' may return text-style emojis, depending on the emoji ޡ
and platform.
Custom delimiters let you use any other character (e.g., {}) if : conflicts ޡ
with your data.

Available Emoji Names and Their Unicode Characters

Emojis are standardized by the Unicode Consortium, each assigned a unique
name and Unicode character. Below is a selection of commonly used emojis
with their names and Unicode representations:

Emoji Name Unicode Emoji Name

͜ grinning_face U+1F600 ڳ hand with
fingers
splayed

⚭ grinning_face_with_big_eyes U+1F603 ዅ call me
hand

https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html

⚳ grinning_face_with_smiling_eyes U+1F604 ✍ writing
hand

͡ beaming_face_with_smiling_eyes U+1F601 ⑥ brain

⛀ grinning_squinting_face U+1F606 anatomical
heart

✿ rolling_on_the_floor_laughing
U+1F923

⏨ person

⚥ face_with_tears_of_joy U+1F602 Ҋ old man

ͫ winking face U+1F609 Ԃ person
gesturing
OK

⌲ star-struck U+1F929 ᎁ person
shrugging

ਵ money-mouth face U+1F911 ⏨ ⚕ health
worker

disguised face U+1F978 ѥ

⚖

woman
judge

ዻ cowboy hat face U+1F920 ⏨ ✈ pilot

ጁ clown face U+1F921 ⏨᣷ astronaut

֞ ogre U+1F479 ৯ Santa Claus

✨ grinning cat U+1F63A ፱ Mrs. Claus

✟ cat with tears of joy U+1F639 Ⓖ vampire

૙ see-no-evil monkey U+1F648 ੮ dog face

https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html

ૡ hear-no-evil monkey U+1F649 ቼ wolf

᧻ heart with arrow U+1F498 ᠱ mouse face

ܛ revolving hearts U+1F49E ఩ panda

ᚚ broken heart U+1F494 ఢ bear

ᖉ kiss mark U+1F48B ׮ penguin

Ṍ hundred points U+1F4AF ᫛ rosette

Ⴙ collision U+1F4A5 ଏ maple leaf

Ⴤ dizzy U+1F4AB ౸ strawberry

ڃ waving hand U+1F44B ⥅ carrot

♔ hamburger U+1F354 ೝ house

౽ pizza U+1F355 ᳰ ambulance

⍑ pot of food U+1F372 ฼ helicopter

উ doughnut U+1F369 ᣷ rocket

۠ globe showing Europe-Africa U+1F30D ⣔ sun behind
small cloud

ᆃ american football U+1F3C8 ᫕ graduation
cap

᠅ game die U+1F3B2 ᑏ loudspeaker

Table 15.0 : List of Emoji

https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html

Note

This is a partial list. For a complete and up-to-date list of all emojis, please
refer to the Unicode Full Emoji List

Deep

You can use Unicode characters to generate emojis in Python. For example:

>>> print("\U0001F349")

…… ♛
>>> print("\U0001F3AF")

…… ቓ
>>> print(chr(0x1F380))

…… ሯ
>>> print(chr(0x1F381))

…… ሴ

https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html

Converting Emojis to Unicode Names

The Python emoji module provides a convenient method called
demojize() that converts emojis into their respective Unicode
names. This is particularly useful when you need to process or
analyze text containing emojis. The demojize() function replaces
each emoji in the text with its corresponding Unicode name,
enclosed in colons.

Example 1

Python ●●●
import emoji

text = 'I love Python! ⛆⣽'
converted_emoji = emoji.demojize(text)
print(converted_emoji)

#Output
I love Python! :smiling_face_with_heart-eyes::snake:

Example 2

Python ●●●
import emoji

text = 'Happy Birthday buddy ሴᅁᄼᅈ'
converted_emoji = emoji.demojize(text)
print(converted_emoji)

#Output
Happy Birthday buddy :wrapped_gift::party_popper::balloon::confetti_ball:

HTTP Server

Python isn’t just a programming language—it also comes with
powerful built-in modules that can transform your computer into a
local server. Using the http.server module, you can serve files
over a network, making them accessible to other devices on the
same network or beyond, depending on configuration.

This functionality can be incredibly useful for quick file sharing, testing
websites locally, or hosting static content during development.

Although it's not intended for production use, the http.server
module is lightweight, easy to set up, and highly customizable by
extending its classes.

Alternative Python Server Modules

While http.server is great for basic tasks, Python also offers powerful
frameworks for building full-featured web servers and APIs:

Framework Description

Flask Lightweight and flexible for small-to-medium web
applications

FastAPI High-performance, async-ready framework for APIs

Django Full-stack web framework with ORM, admin panel, and
more

Tornado Asynchronous networking library with web server
capabilities

aiohttp Async HTTP client/server framework

Bottle Minimalist micro-framework ideal for small apps

Table 24.0: Some Python Servers

Why Use an HTTP Server?

Here are some common reasons to set up a basic HTTP server using Python:

✏ Quick file sharing between devices on the same network

✏ Download files without using third-party apps or services

✏ Serve static websites during development

✏ Test frontend interfaces before backend integration

✏ Share folders in classrooms or teams over Wi-Fi

✏ Learn basic client-server concepts using Python

Steps to Turn Your Computer into a Local Server
Turning your computer into a server using Python is both simple and
powerful for local file sharing, development, or testing. Here's a step-by-step
guide to get you started.

① Establish a Network Connection

Before your computer can function as a server, it must be connected to the
same network as the client devices that will access it.

How to Create a Local Network

The key is to ensure both the host (server) and clients are on the same local
network. This can be achieved in several ways:

1. Connect all devices to the same Wi-Fi network

2. Share a mobile hotspot from the server computer and connect
clients to it

3. Use an Ethernet cable for a LAN (Local Area Network) setup

4. Enable Wi-Fi Direct if supported by the devices

5. Use a home router to interconnect wired and wireless devices

6. For Virtual Machines (VMs), use bridged or NAT networking
to simulate a shared network

Note

If you are hosting to virtual machines installed on the same computer, a
physical network is not required. Most VMs use internal virtual network
bridges that allow access to the host automatically.

② Start the Python HTTP Server

Once the network is ready, it's time to start the server on the host computer.

On the Host Computer (Server)

Open your terminal (macOS/Linux) or PowerShell/Command Prompt
(Windows) and navigate to the folder you wish to share.

Run one of the following commands:

Runs on localhost(domain) with default port (8000)

$ python -m http.server

Custom port

$ python -m http.server 2000

This launches a basic HTTP server, serving the current directory’s files.

③ Accessing the Server from a Client Device

Now, from any client computer connected to the same network:

On the Client Device

1. Open a web browser (Chrome, Edge, Firefox, etc.)

2. In the address bar, type the server address based on the host
configuration:

If using the host's IP address:
http://192.168.0.105:2000 (replace with actual host IP)

If accessing from the same machine (for testing):
http://localhost:8000 or http://127.0.0.1:8000

1. You'll now see a file explorer-style view of the server directory—
these are your server resources!

Deep

Finding the Server IP Address

If you're unsure of your host IP address (for client access), you can find it
with:

On Windows

PS D:\Python> ipconfig

On Linux/macOS

$ ifconfig
$ ip a

Key Points

.Ensure all devices are on the same network ޡ

.Use python -m http.server [port] to start the server ޡ

.Access via browser using http://host_ip:port ޡ

Turtle

The Python Turtle module is a powerful tool for drawing geometric shapes,
animations, and patterns by moving the turtle (cursor) in different directions
on the screen. The turtle follows a set of programmed instructions, allowing
users to create intricate designs. This module is pre-packaged in Python and
can be imported using the import turtle statement.

Turtle graphics are widely used in educational environments to introduce
programming concepts in a fun and interactive way. It helps beginners
understand loops, functions, and event-driven programming by visually
representing code execution.

Features of Python Turtle

✏ Cursor as a Drawing Tool

The turtle acts as a pen or cursor controlled by user-defined commands. It
draws shapes or patterns as it moves on the screen.

✏ Directional Movement

The turtle can move forward, backward, left, and right, each defined with a
specific length or angle.

✏ Customizable Appearance

Users can change the turtle’s color, shape, and size. Some predefined shapes
include arrow, classic, square, triangle, and circle.

✏ Drawing Geometric Shapes

By combining movement commands and loops, users can create polygons,
fractals, spirals, and stars, among other complex patterns.

✏Animation Capabilities

Animations can be created by adjusting the speed, timing, and using loops to
control the turtle’s motion.

Methods

done goto home penup

mainloop setx undo pendown

forward sety pencolor teleport

fd setheading color getshapes

backwards seth bgcolor shape

bk setpos fillcolor shapesize

right setposition begin_fill hideturtle

rt position end_fill hd

left pos pensize showturtle

lt clone width st

bye write stamp speed

clear reset begin_poly delay

clearscreen resetscreen end_poly circle

title exitonclick bgpic dots

tracer clearstamp pu isdown

textinput clearstamps pd isinvisible

back numinput up turtlesize

distance addshape update towards

Deep
To discover additional methods and attributes in the turtle module, use the
dir() function

>>> import turtle
>>> tut = turtle.Turtle()
>>> dir(turtle)

Note
After drawing shapes with Turtle, you can save everything on the screen as

an .eps file using getcanvas() and postscript(file). This .eps file can later
be converted to an image. For example:
>>> from PIL import Image
>>> turtle.circle(100)
>>> tscreen = turtle.getscreen()
>>> tscreen.getcanvas().postscript(file = “shape.eps”)
>>>

>>> img = Image.open(“shape.eps”)
>>> img.save(“drawing.png”)

① Basic Turtle Operations

done() and mainloop()

After drawing a shape, the screen normally closes immediately. The
following methods prevent the screen from closing automatically after the
drawing is completed:

turtle.done(): Keeps the window open until manually closed.

turtle.mainloop(): Similar to turtle.done(), keeps the turtle graphics
window active.

Python ●●●
import turtle
turtle.done()
turtle.mainloop()

bgcolor(color):
bgcolor() defines the background color of the turtle graphics window.
Colors can be specified in two formats:

Named colors such as "red", "blue", "purple", etc.
Hexadecimal format "#rrggbb", where r, g, and b are values

from 0-9 or A-F.

Python ●●●
import turtle
turtle.bgcolor("#443E46")
turtle.mainloop()

② Movement and Positioning

foward(float) and fd(float)
Moves the turtle forward by the specified distance.

Python ●●●
import turtle
turtle.forward(250)
turtle.mainloop()

backward(float) and bk(float)
Moves the turtle backward by the specified distance.

Python ●●●
import turtle
turtle.bk(100)
turtle.mainloop()

right(angle) and rt(angle)
Rotates the turtle clockwise by the specified angle.

Python ●●●
import turtle
turtle.fd(200)
turtle.right(90) #rotates by 90 degrees clockwise

turtle.fd(200)
turtle.mainloop()

left(angle) and lt(angle)
Rotates the turtle counterclockwise by the specified angle.

Python ●●●
import turtle
turtle.forward(200)
turtle.left(45) #rotates by 45 degrees counterclockwise
turtle.mainloop()

goto(x, y)
Moves the turtle to the specified (x, y) coordinates.

Python ●●●
import turtle
turtle.goto(50, 100) #moves turtle to 50 on x-axis and 100 on y-axis
turtle.goto(100, 0)
turtle.goto(150, 0)
turtle.goto(200, 0)
turtle.goto(200, 0)
turtle.goto(150, -100)
turtle.goto(200, -200)
turtle.goto(50, -150)
turtle.goto(0, -200)
turtle.mainloop()

setx(x) and sety(y)
setx(x): Moves the turtle to a specific x-coordinate while keeping the y-
coordinate constant.
sety(y): Moves the turtle to a specific y-coordinate while keeping the x-
coordinate constant.

Python ●●●
import turtle
turtle.setx(20) #set x coordinate to 20
turtle.sety(45) #set y coordinate to 45
turtle.mainloop()

setheading(angle) and seth(angle)
Sets the turtle’s heading to the specified angle.

Python ●●●
import turtle
turtle.forward(100)
turtle.setheading(90) #turns to 90 degrees
turtle.forward(50)
turtle.done()

setposition(x, y) and setpos(x, y)
Moves the turtle to the specified (x, y) coordinates and begins drawing from
that point.

Python ●●●
import turtle
turtle.setposition(0, 100)
turtle.setposition(200, 100)
turtle.setpos(200, 0)
turtle.setpos(0, 0)
turtle.done()

position() and pos()
Returns the current (x, y) coordinates of the turtle.

Python ●●●
import turtle
coord = turtle.position()
print(coord) #output : (0.00, 0.00)

Think about it ?

.clone(): Creates a duplicate instance of the turtle at the current position ޡ

home(): Moves the turtle to the origin (0,0) and resets the heading to 0 ޡ
degrees.

undo(): Removes the last action performed by the turtle, such as a ޡ
drawn line.

③Pen Control

pencolor(color) and color(color)
These set the line color for drawing. It accepts:

Named colors: "red", "green", "blue", etc.
Hexadecimal format "#rrggbb", where r, g, and b are values
from 0-9 or A-F.

Python ●●●
import turtle
turtle.color(“orange”) #line color is set to red

for width in [200, 100, 200, 100]:
 turtle.forward(width)
 turtle.right(90)
turtle.done()

fillcolor(color), begin_fill(color) and .end_fill(color),
The fillcolor defines the fill color for closed shapes.
begin_fill(): Marks the start of filling.
end_fill(): Completes and fills the drawn shape.
Colors can be specified in two formats:

Named colors such as "red", "blue", "purple", etc.
Hexadecimal format "#rrggbb", where r, g, and b are values
from 0-9 or A-F.

Python ●●●
import turtle

tut = turtle.Turtle()
tut.fillcolor("#209010") #fill color is set to green
tut.begin_fill()

for i in range(4):
 tut.forward(200)
 tut.right(90)

tut.end_fill()
turtle.done()

penup() or pu() and pendown() or pd()
turtle.penup() or turtle.pu() lifts the pen so the turtle moves without drawing.

turtle.pendown() or turtle.pd() lowers the pen so the turtle resumes drawing.

Python ●●●
import turtle

turtle.goto(50, 100)
turtle.goto(100, 0)
turtle.goto(0, 0)

turtle.penup()
turtle.goto(-200, 0)
turtle.pendown()

for i in range(4):
 turtle.forward(100)
 turtle.right(90)

turtle.done()

Think about it ?

:turtle.teleport(x, y) ޡ

Moves the turtle to a new position without drawing, similar to penup() and

pendown() but with specified coordinates.

()What will the appearance be without using penup() and pendown ޡ

pensize(float) and width(float)
turtle.pensize(): Defines the thickness of the drawing line.
turtle.width(): Functions the same as pensize(), adjusting the pen thickness.

Python ●●●
import turtle

turtle.pensize(20)
turtle.done()

④ Appearance and Shape Control

hideturtle() or ht() and showturtle() or st()
The hideturtle() or ht() hides the turtle cursor from the screen.
The showturtle() or st() makes the turtle visible after hiding.

Python ●●●
import turtle
turtle.showturtle()
turtle.hideturtle()
turtle.done()

shape(shape) , shapesize(stretch_wid, stretch_len, outline)
and getshapes()
The shape() sets the shape of the turtle cursor.
The shapesize() modifies the shape's width, length, and outline thickness.
The getshapes() returns a list of all available shapes. The following are
available shapes.
"arrow", "blank", "circle", "classic", "square", "triangle", "turtle"

Shape Icon Shape Icon

arrow triangle

square turtle

circle blank

classic
Table 25.0: Some available turtle shapes

Python ●●●
import turtle
shapes = turtle.getshapes()
print(shapes) #output: ['arrow', 'blank', 'circle', 'classic', 'square',
'triangle', 'turtle']

turtle.shape("turtle")
turtle.shapesize(stretch_wid= 10, stretch_len= 20, outline = 2)

speed(int) and delay(number)
The speed() sets the drawing speed from 0 (slowest) to 10 (fastest). Accepts
strings: "slow", "normal", "fast".
The delay() defines the time delay between turtle movements.

Python ●●●
import turtle
turtle.speed(5)
turtle.delay(3.5)
turtle.done()

⑤ Drawing Shapes

circle(radius, extent=None, steps=None)
The circle() method allows the turtle to draw a circle with the specified
radius.
extent → (float) [Optional]: Defines the length of the circumference to be
drawn.
steps → (int) [Optional]: Specifies the number of points to form an enclosed
polygon. Using steps, you can draw different polygons instead of a perfect
circle.

Python ●●●
import turtle
turtle.shape("turtle")
turtle.color("purple", "orange")

turtle.begin_fill()
turtle.circle(radius = 100)
turtle.end_fill()

turtle.mainloop()

Think about it ?

How can the circle() method be used to draw polygons?

Python ●●●
turtle.pensize(5)
turtle.shape('turtle')

turtle.color("purple", "orange")
turtle.begin_fill()
turtle.circle(radius=100, steps= 3) #polygon with 3 sides (triangle)
turtle.teleport(x=-150, y= 100)
turtle.color("pink", "cyan")
turtle.circle(radius=100, steps= 4) #polygon with 4 sides (square)
turtle.teleport(x= 200, y= 50)
turtle.color("teal", "yellow")
turtle.circle(radius=100, steps= 5) #polygon with 5 sides (pentagon)
turtle.teleport(x= 50, y= -200)
turtle.color("red", "green")
turtle.circle(radius=100, steps= 6) #polygon with 6 sides (hexagon)
turtle.teleport(x= -150, y= -160)
turtle.color("purple", "orange")
turtle.circle(radius=100, steps= 7) #polygon with 7 size (heptagon)
turtle.end_fill()

turtle.mainloop()

dot(size)
The dot() method creates dots on the screen with a specified size (integer).

Python ●●●
import turtle
import random

colors = ["red", "orange", "green", "purple", "blue"]
for i in range(1, 500):
 turtle.pencolor(colors[random.randint(0,len(colors) -1)])
 turtle.dot(size=10)
 turtle.teleport(x=random.randint(-i, i), y=random.randint(-i, i))

turtle.mainloop()

begin_poly() and end_poly()

The begin_poly() marks the start of a polygon, allowing you to define custom
shapes.
The end_poly() marks the completion of the polygon.

Python ●●●
import turtle
turtle.begin_poly()
turtle.end_poly()

write(arg, move, align, font)
The write() method prints text onto the screen with customizable options.
arg → Can be a string, number, list, dictionary, set, tuple, boolean, or bytes.
move → (bool) [Optional]: If True, the turtle moves by the length of the text.
Default is False.
align → (string) [Optional]: Defines text alignment ("left", "center", or
"right"). Default is "left".
font → (tuple) [Optional]: Defines the text appearance:

Font Family (str) – Example: "Arial", "Consolas", "Times New
Roman", "Tahoma", "Georgia".
Font Size (int) – Defines the text size.
Font Style (str) – "normal", "bold", "italic", or "underline"

Python ●●●
import turtle
turtle.bgcolor("orange")
turtle.color("white")
turtle.shape('turtle')
turtle.teleport(x=-30, y=50)
turtle.write(arg="Cracky Code", font=("tahoma", 25, "bold"))
turtle.teleport(x=-200, y=0)

turtle.write(arg="Awesome Python!☻", font=("Georgia", 30))
turtle.teleport(x=-30, y=-50)
turtle.write(arg="Just get me a coffee", align="center", font=("Georgia", 25,
"italic"))
turtle.done()

Think about it ?

The stamp() method leaves an impression of the turtle’s shape at its
current position on the screen. Does it works the same way as the stamps
used in letters?

⑥ Screen and Window Control

bye(), reset(), cleaerscreen(), and clear()
The bye() closes the turtle window immediately.
The reset() resets the screen and clears all drawings.

The clearscreen() clears all shapes drawn by the turtle.
The clear() clears only the currently drawn object.

Python ●●●
import turtle
turtle.bye()
turtle.reset()
turtle.clearscreen()
turtle.clear()

title(title) and exitonclick()
The title() sets the window title.
The exitonclick() closes the window when clicked.

Python ●●●
import turtle
turtle.title("My Title")
turtle.exitonclick()

Examples of Shapes Created Using Turtle

1. Flower with Spiral Petals

Python ●●●

import turtle
import math

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#F5F8FA")
t.pensize(1)
t.pencolor("red")

Function to draw a spiral flower
def flower(petals, angle_step,
size_factor):
 for i in range(petals):
 t.forward(math.sqrt(i) *
size_factor)
 t.left(angle_step)

Draw the flower
flower(360, 65, 10)

turtle.done()

Python ●●●

import turtle
import math

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#F5F8FA")
t.pensize(1)
t.pencolor("purple")

Function to draw a spiral flower
def flower(petals, angle_step,
size_factor):
 for i in range(petals):
 t.forward(math.sqrt(i) *
size_factor)
 t.left(angle_step)

Draw the flower
flower(360, 100, 20)

turtle.done()

2. Colorful spiral flower

Python ●●●

import turtle
import random

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#14171A")
t.pensize(1)
colors =
["red","yellow","green","blue","orange","purple"]

Function to draw a spiral flower
def flower(petals, angle_step):
 for i in range(petals):
 t.pencolor(random.choice(colors))
 t.forward(i)
 t.left(angle_step)

Draw the flower
flower(360, 59)

turtle.done()

Python ●

import turtle
import random

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#14171A")
colors =
["red","yellow","green","blue","orange","purple

Function to draw a spiral flower
def flower(petals, size, angle):
 for i in range(petals):
 t.pencolor(random.choice(colors))
 t.circle(size)
 t.left(angle)

Draw the flower
flower(72, 100, 10)

turtle.done()

2. Colorful square flower

Python ●●●

import turtle
import random

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#14171A")
colors =
["red","yellow","green","blue","orange","purple"]

def create_square(size):
 for i in range(4):
 t.forward(size)
 t.right(90)

def flower(repeat, size, angle):
 for i in range(repeats):
 t.pencolor(random.choice(colors))
 create_square(size)
 t.right(angle)

flower(72, 100, 10)
turtle.done()

Python ●●

import turtle

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#14171A")
colors =
["red","yellow","green","blue","orange","purple

for i in range(100):
 t.pencolor(colors[i % len(colors)]
 t.forward(i * 5)
 t.right(91)

turtle.done()

2. Colorful hexagonal flower

Python ●●●

import turtle

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#14171A")
colors = ["red","yellow","green",

"blue","orange","purple"]

for i in range(6):
 t.pencolor(colors[i % len(colors)])
 for _ in range(6):
 t.forward(100)
 t.right(60)
 t.right(60)

turtle.done()

Python ●●●

import turtle

t = turtle.Turtle()
t.speed(0)
turtle.bgcolor("#ffffff")

for i in range(100):
 for _ in range(3):
 t.forward(i * 4)
 t.right(140)
 t.right(5)

turtle.done()

Pillow (PIL)

Pillow, also known as PIL (Python Imaging Library), is a core Python
module for loading, manipulating, enhancing, and processing images in
various formats. It provides a wide range of image-processing capabilities
that allow developers to modify images programmatically. Pillow enables
tasks such as image resizing, cropping, rotating, filtering, and format
conversion, making it an essential tool for applications that involve image
processing.

Features and Functionalities

✏ Loading, Showing, and Printing Images
Pillow allows users to load images from different file formats and display
them directly. Additionally, it provides the capability to print image details
such as size, mode, and format.

✏ Creating Images from Scratch
Developers can generate images from scratch using Pillow, defining colors,
sizes, and shapes as needed. This feature is particularly useful for creating
placeholders, patterns, or visual data representations.

✏ Image Rotation
Pillow provides built-in methods to rotate images at various angles. This
feature is useful in applications requiring image orientation adjustments, such

as correcting tilted photos.

✏ Image Cropping
Images can be cropped to extract specific areas of interest. This feature is
commonly used in applications requiring face detection, object recognition,
or automated document processing.

✏ Scaling Images
Resizing images while maintaining aspect ratio is an essential function in
many applications. Pillow enables users to scale images to fit different screen
sizes or optimize them for various platforms.

✏ Image Filtering
Pillow provides filtering capabilities to enhance images, including
sharpening, blurring, and edge detection. These features improve image
quality and can be used for artistic effects or pre-processing in machine
learning applications.

✏ Image File Format Conversion
Pillow supports converting images from one file format to another. This
functionality is useful for optimizing images for different use cases, such as
converting a high-resolution PNG to a more storage-efficient JPEG.

✏ Color Transformation
The library allows changing an image’s color mode, such as converting an

image from RGB to grayscale. This is useful for reducing file size, improving
contrast, or preparing images for further analysis.

✏ Resizing Images
Pillow provides methods to resize images while preserving quality. This
feature is particularly useful for creating thumbnails or optimizing images for
web applications.

✏ Retrieving Image Statistics
The library includes a histogram method that allows users to analyze pixel
distribution within an image. This feature is commonly used in image
recognition, segmentation, and color analysis applications.

Installation and Compatibility

While Pillow is often pre-installed with Python, some environments may
require manual installation. It is important to ensure that PIL is not installed
alongside Pillow, as they may not coexist properly.

Note
In case of compatibility issues, it is recommended to uninstall PIL before
installing Pillow.

pip uninstall PIL ޡ

pip install pillow ޡ

Pillow remains a powerful and versatile tool for image processing in Python,

supporting a wide range of functionalities suitable for beginners and
advanced users alike. Whether for simple tasks such as resizing and cropping
or complex operations like filtering and transformation, Pillow provides a
robust solution for handling images programmatically.

Image File Formats

Pillow (PIL) is a powerful image processing library capable of handling
various image file formats across different operating systems. It allows
seamless conversion between formats while preserving image quality. An
image can be loaded in one format, processed, and saved in another without
loss of essential details.

Supported Image Formats and Platforms
Pillow supports a wide range of image file formats commonly used across
multiple platforms:

Format Extension(s) Description Platforms

JPEG / JFIF .jpg, .jpeg Common image format,
lossy compression

Windows,
macOS,
Linux

JPEG 2000 .jp2, .j2k,
.jpx

Advanced JPEG format
with better compression

Windows,
macOS,
Linux

PNG .png Portable Network Windows,

Graphics, supports
transparency

macOS,
Linux

TIFF .tif, .tiff Tagged Image File Format,
used in professional
photography

Windows,
macOS,
Linux

ICO .ico Windows icon format Windows

ICNS .icns macOS icon format macOS

GIF .gif Graphics Interchange
Format, supports animation

Windows,
macOS,
Linux

PPM/PGM/PBM .ppm, .pgm,
.pbm

Portable
Pixmap/Graymap/Bitmap

Unix-based
systems

SGI .sgi, .rgb,
.rgba, .bw

Silicon Graphics Image
format

Windows,
macOS,
Linux

MSP .msp Microsoft Paint format (old
versions)

Windows

PCX .pcx Paintbrush image format Windows

BMP .bmp Bitmap image format Windows,
macOS,
Linux

DDS .dds DirectDraw Surface, used
in game textures

Windows,
macOS,
Linux

DIB .dib Device-independent
bitmap

Windows

EPS .eps Encapsulated PostScript Windows,
macOS,
Linux

IM .im A format used by LabEye
and other applications

Windows,
macOS,
Linux

WEBP .webp Modern web image format
with better compression

Windows,
macOS,
Linux

TGA .tga Truevision TGA, used in
3D graphics and gaming

Windows,
macOS,
Linux

XPM .xpm X PixMap, used in X11
applications

Unix-based
systems

XBM .xbm X Bitmap, used in X11
GUI systems

Unix-based
systems

SPIDER .spi Multi-image format used in
electron microscopy

Windows,
macOS,
Linux

PFM .pfm Portable Float Map, used
in high-precision images

Windows,
macOS,
Linux

FITS .fli, .flc Flexible Image Transport Windows,

System, used in astronomy macOS,
Linux

CUR .cur Windows cursor format Windows

MIC .mic Microsoft Image Composer
format

Windows

PSD .psd Adobe Photoshop format Windows,
macOS,
Linux

WMF, EMF .wmf, .emf Windows Metafile /
Enhanced Metafile, used
for vector graphics

Windows

Table 26.0: Supported Image File Formats in Pillow

Deep

With Pillow's image file conversion capabilities, you can easily convert an
image from one format to another, including converting images to PDF.

The PIL Modules

Pillow (PIL) consists of several modules, each designed to provide
specialized classes and methods for handling different aspects of image
processing. These modules focus on various functionalities such as image
filtering, color manipulation, special effects, image composition, painting, 2D
graphics, and other advanced graphic features. Each class within these
modules offers distinct methods that enable efficient image and graphic
processing.
Some essential Pillow modules

✅ Image Module (PIL.Image)
Provides the core functionality for opening, creating, and saving
images.
Supports multiple image formats.

✅ ImageChops Module (PIL.ImageChops)
Supports image arithmetic and logical operations.
Used for blending, compositing, and enhancing images.

✅ ImageEnhance Module (PIL.ImageEnhance)
Provides methods to adjust brightness, contrast, sharpness, and
color balance.

✅ ImageFilter Module (PIL.ImageFilter)
Offers predefined filters such as BLUR, CONTOUR, DETAIL,
EDGE_ENHANCE, SHARPEN, etc.

✅ ImageDraw Module (PIL.ImageDraw)
Allows drawing shapes, lines, and text onto images.

✅ ImageFont Module (PIL.ImageFont)
Handles different font styles for rendering text on images.

✅ ImageGrab Module (PIL.ImageGrab)
Captures screenshots (Windows and macOS only).

Note

Pillow includes many modules, some of which extend beyond the scope of
this book. The modules listed above are essential for graphic design.

Deep

There are four simple ways to utilize the modules or classes provided by
PIL:

1. Importing a single module by its name from PIL.
>>> from PIL import Image

1. Importing multiple modules from PIL at once.
>>> from PIL import Image, ImageDraw, ImageFilter

1. Importing all classes using the * wildcard.
>>> from PIL import *

1. Importing PIL and creating instances of classes when needed.
>>> import PIL
>>> img = PIL.Image.open(‘mypicture.jpg’)

The Image Module

The Image module in Pillow provides a class with various methods, each
offering unique functionalities for handling images. This module allows you
to open, load, display, rotate, create, crop, and retrieve image information
seamlessly.

Methods

open show blend core

close save alpha_composite deprecate

new merge annotation effect_noise

frombyte split atexit enum

frombuffer math builtins eval

module abc cast fromarray

fromqimage fromqpixmap getmodebans getmodebase

getmodetype init io is_path

item linear_gradient logger logging

preint os radia_gradient re

isImageType register_extensions register_save register_open

tempfile register_mime register_save_all register_extensions

show()
Displays the image using the system’s default image viewer. It
creates a temporary file to preview the image.

new(mode, size, color)
The new() method creates a new image from scratch by specifying
its mode, size, and color.
mode →(string): Defines the type of color bands (e.g., "RGB", "RGBA", "L",
or "CMYK").
size → (float,float): A 2-tuple (width, height) representing the image
dimensions.
color → (Optional): Defines the image color as:

A single integer (e.g., 156).
An RGB or RGBA tuple (red, green, blue, alpha).
A string representing a color name (e.g., "red").
A hex color name (e.g., "# F5F8FA").

Python ●●●

from PIL import Image
img = Image.new(mode = “RGBA”, size = (600, 800), color =
“#1DA1F2”)
img.show()

open(path, mode, format)
This method loads an image from a specified path.
path → (string): The file location (as a string or bytes).
mode → (string) [Optional]: Specifies read 'r' (default) or write 'w'.
format → (Optional): Defines the format if not inferred from the file.

Methods and Attributes of an Open Image

height custom_mimetype format getexif save

app decoderconfig fp getextrema seek

applist decodermaxblock frombytes getim show

histogram get_format_mimetype entropy getpalette size

bits effect_spread filename getpixel split

close get_child_images getbands getprojection tell

convert has_transparency_data getchannel getxmp thumbnail

copy apply_transparency getcolors load_djpeg tile

crop alpha_composite getdata load_prepare tobitmap

draft format_description filter quantization transform

icclist putpalette load_read quantize transpose

info putpixel point readonly verify

layer palette putalpha reduce width

mode paste putdata remap_palette resize

rotate

Table 26.1: Some Available Methods of an Open Image

Deep

To retrieve the methods and attributes of an image opened with

Image.open(), use the dir() function on the image object.
>>> img = Image.open(“path/to/image.jpg”)
>>> dir(img)

Think about it ?

The close() method closes the image and frees up system resources, such as
memory and file handles, that were allocated when the image was opened
for editing. What other specific resources does it release?

Python ●●●

from PIL import Image
img = Image.open(“flower_girl.jpg”)
img.show()

Saving Images and File Conversion

save(fp, format, save_all, append_images, loop, duration, quality, disposal,
transparency, interlace)

The save() method in Pillow plays a crucial role in saving and converting
images. It provides multiple functionalities depending on the file format used.
For instance, saving an image as a GIF requires parameters that might not be
applicable when saving as a JPEG.

Key Functions of save()

✏ Saving an edited or manipulated image as a new file.
✏ Converting an image from one format to another.
✏ Stacking multiple images into a single file.
✏ Creating animated images such as GIFs.

Parameters
fp →(str) [required]: The filename or file path to save the image. The file
extension must be included (e.g., "myimage.jpg").

format →(str) [Optional]: Specifies the file format (e.g., "JPEG", "PNG",
"GIF"). If omitted, the format is inferred from fp.

save_all →(bool) [Optional]: If True, saves all frames of a multi-frame image
(e.g., GIF). Default is False, which saves only the first frame.

append_images →(list of Image objects) [Optional]: A list of additional
images to be appended, useful for stacking images or creating animations.

loop →(int) [Optional, GIF-specific]: Specifies how many times an animated
image should loop. 0 means infinite looping.

duration →(int) [Optional, GIF-specific]: Sets the display duration (in
milliseconds) for each frame in an animated image.

quality →(int) [Optional, JPEG-specific]: Determines the quality of the saved
image (1 to 95). Higher values yield better quality. Default is 75.

disposal →(int)[Optional, GIF-specific]: Determines how the previous frame
is handled in animations. Default is 0.

transparency →(int or None)[Optional, GIF/PNG-specific]: Defines a
transparency color index.

interlace →(bool)[Optional, PNG-specific]: If True, enables interlacing for
progressive loading.

Python ●●●
from PIL import Image
img = Image.open(“flower_girl.jpg”)
img.save(“new_image.jpg”)

Deep

You can convert an image to a different format by changing the file
extension in the filename.

>>> from PIL import Image
>>> img = Image.open(“image.jpg”)
>>> img.save(“myimage.png”) # conversion from JPG to PNG

Creating GIFs or Animated Images

Python ●●●

from PIL import Image
img1 = Image.open("image1.jpg").resize(size=(600, 800))
img2 = Image.open("image2.jpg").resize(size=(600, 800))
img3 = Image.open("image3.jpg").resize(size=(600, 800))

imgs = [img2, img3]

img1.save(fp="animate.gif", save_all= True, append_images= imgs,
duration= 5, loop=0)

Creating PDFs

Python ●●●
from PIL import Image
pic1 = Image.open("picture1.jpg").resize(size=(600, 800))
pic2 = Image.open("picture2.jpg").resize(size=(600, 800))
pic3 = Image.open("picture3.jpg").resize(size=(600, 800))

imgs = [pic2, pic3]

pic1.save(fp="sample.pdf", format=”PDF”, save_all= True,
append_images= imgs)

Think about it ?

A multi-frame image is a single file that contains multiple images, allowing
for animation or layered content. Formats that support multi-frame images
include GIF and TIFF, which can store multiple frames within one file.
What other formats support multi-frame images?

Color Conversion and Filters

Pillow provides various methods for converting colors, applying filters, and
manipulating image color channels. These functions help in changing image
modes, adjusting transparency, and processing pixel values.

convert(mode, colors)
The convert() method is used to change an image from one color mode to
another.
mode →(string)[optional] : Specifies the target color mode. Common modes
include:

RGB – Red, Green, Blue
CMYK – Cyan, Magenta, Yellow, Black
L – Luminance (grayscale)
RGBA – RGB with an Alpha (transparency) channel
LAB, HSV, P, 1, I, F – Other modes for various image types

colors →(optional): An integer (0–256) specifying the number of colors
when using the Palette.ADAPTIVE mode.

Python ●●●
from PIL import Image
img = Image.open(“flower_girl.jpg”)

gray_image = img.convert(mode = ”L”)
img.show() # showing the original image
gray_image.show() # showing a gray image

Note

In grayscale conversion, the formula used is:
L=(R×299/1000)+(G×587/1000)+(B×114/1000)L = (R \times 299/1000) +
(G \times 587/1000) + (B \times 114/1000)L=(R×299/1000)+
(G×587/1000)+(B×114/1000)
Where: R = Red, G = Green, B = Blue

putalpha(alpha)
This method adjusts the transparency (alpha) of an image.
alpha →(int): An integer that defines the transparency level. Lower values
increase transparency. A value of 1 makes the image almost completely
invisible.

Python ●●●
from PIL import Image
img = Image.open(“flower_girl.jpg”)
copied = img.copy() # creates a copy of the image
img.putalpha(alpha = 100)
copied.putalpha(alpha = 20)
img.show() # showing first image with alpha 100
copied.show() # showing second image with alpha 20

point(lut)
It applies a function to modify pixel values across all bands in the image.
lut →(function): A required function that takes a single argument and returns
a new pixel value.

Python ●●●
from PIL import Image

img = Image.open(“africa.jpg”)
inverted = img.point(lut = lambda x: 255 - x) # this function inverts
each pixel’s value

img.show() # showing the original image
inverted.show() # showing an inverted image (dark areas become white
and white area, dark)

split() and merge(mode, bands)
The splits() divides an image into individual color bands. This is
useful for processing specific channels separately. For example,
Splitting an RGB image results in three separate images for Red, Green, and
Blue.

The merge() combines individual image bands into a single image.
mode : The target mode for merging, such as "RGB" or "CMYK".

bands : A sequence of images, each representing a single color channel.

Python ●●●
from PIL import Image

img = Image.open("africa.jpg")
r, g, b = img.split() # splitting image into 3 color bands (red, green,
blue)
r.show()
g.show()
b.show()

merged_img = Image.merge(mode= "RGB" , bands = [r, g, b]) #
merging the color bands
merged_img.show()

Red color band Green color band

Blue color band

Merged color bands (bands = [
r, g, b])

Merged color bands (bands = [b, g, r]) Merged color bands (bands = [
g, b, r])

Think about it ?
1. Why do the images above show only slight differences in their color
bands?
2. Why do the images appear in grayscale even in the red, green, and blue
color bands?
3. Can you identify the subtle differences between them?

Geometric Transformations

Image Transformation refers to modifying an image’s structure, size,
orientation, or content without altering its core data. Pillow provides various
transformation methods such as resizing, rotating, cropping, and pasting
images. These transformations allow precise control over how images appear
and are processed.

resize(size, box, resample)
The resize() method is used to scale an image up or down, modifying its
width and height.
size → (width, height): A required 2-tuple defining the new dimensions.
box → (left, top, right, bottom): An optional 4-tuple specifying the region to
be scaled.
resample: Defines the resampling filter (e.g., Image.Resampling.NEAREST,
Image.Resampling.BILINEAR, Image.Resampling.BICUBIC).

Python ●●●
from PIL import Image

img = Image.open(“bird.jpg”)
resized = img.resize(size= (600, 800))
resized_with_box = img.resize(size= (600, 800), box =(0, 0, 400, 600))

resized.show()
resized_with_box.show()

reduce(factor, box)
The reduce() method scales down an image by a given factor while
preserving quality.
factor →(int or 2-tuple) : Required parameter defining the reduction ratio.
box → (left, top, right, bottom): Optional 4-tuple specifying a region to be
reduced.

Python ●●●
from PIL import Image

img = Image.open(“bird.jpg”)
reduced = img.reduce(factor= 5)
img.show()
reduced.show()

Deep

The thumbnail(size, resample) method resizes an image to fit within a
bounding box while maintaining its aspect ratio.

size: (width, height) — A 2-tuple defining the maximum size.
resample: Defines the resampling filter (same as resize).

rotate(angle, center, fillcolor, resample, expand,
translate)
The rotate() method rotates an image by a given angle around a
specified center point.
angle → (float): Rotation angle in degrees.
center → (x, y): Optional 2-tuple defining the pivot point.
fillcolor → (int or tuple): Optional color for the empty areas.
expand → (bool): If True, resizes the output to fit the entire rotated image.
translate → (x, y): Optional 2-tuple shifting the image.
resample: Defines the resampling filter (same as resize). The available filters
include,

Resampling.NEAREST Resampling.BILINEAR Resampling.BICUBIC

Resampling.BOX Resampling.HAMMING Resampling.LANCZOS

Python ●●●

img = Image.open(“bird.jpg”)

rotation_180 = img.rotate(angle=180)
rotation_90=img.rotate(angle=90, expand=True,
resample=Image.Resampling.BICUBIC)
rotation_45 = img.rotate(angle= 45, expand= True, fillcolor="red")
rotation_135 = img.rotate(angle= 135, expand= True, center= (300,300))

rotation_180.show()
rotation_90.show()
rotation_45.show()
rotation_135.show()

180o rotation 90o rotation

45o rotation 135o rotation

Note
Image.Resampling.BOX is not supported for rotation.

transpose(method)
The transpose() method provides predefined rotation and flipping
options: The available defined rotation methods are,

Methods Description

Image.Transpose.ROTATE_90 Rotates 90° counterclockwise.

Image.Transpose.ROTATE_180 Rotates 180°.

Image.Transpose.ROTATE_270 Rotates 270°.

Image.Transpose.FLIP_LEFT_RIGHT Flips the image horizontally.

Image.Transpose.FLIP_TOP_BOTTOM Flips the image vertically.

Image.Transpose.TRANSVERSE Rotating 90° counterclockwise,
then flipping horizontally

Image.Transpose.TRANSPOSE Rotating 90° clockwise, then
flipping vertically.

Table 26.2 : Defined rotation methods

Python ●●●

from PIL import Image
img = Image.open(“bird.jpg”)

transpose = img.transpose(Image.Transpose.TRANSPOSE)
transverse = img.transpose(Image.Transpose.TRANSVERSE)
transpose_90 = img.transpose(Image.Transpose.ROTATE_90)
transpose_180 = img.transpose(Image.Transpose.ROTATE_180)
transpose.show()
transverse.show()
transpose_90.show()
transpose_180.show()

TRANSPOSE TRANSVERSE

ROTATE_90 ROTATE_180

crop(box) and paste(image, box, mask)
The crop() extracts a rectangular region from an image.
box →(left, top, right, bottom): A 4-tuple defining the region to extract.

The paste() pastes or places an image onto another image at a specified
position.
image: The source image to paste.
box → (left, top): Optional coordinates for positioning.
mask →(Image or None): An optional mask for transparency.

Python ●●●
from PIL import Image
puppy1 = Image.open("puppy1.jpg")
puppy2 = Image.open("puppy2.jpg")

puppy1.show()
puppy2.show()

cropped = puppy1.crop(box= (200, 200, 600,1000)) # extracting a
region from puppy1
puppy2.paste(im= cropped, box = (10, 500))
puppy2.show()

Puppy1 Puppy2

puppy1 pasted into puppy2

Image Attributes

Pillow provides several attributes for retrieving essential information about
an image. These attributes help in understanding the image’s format, size,
color composition, and more.

filename and format

The filename returns the full name of the image file, including its extension.
The format returns the image file format, such as "JPEG", "PNG", or "GIF".
This corresponds to the file extension of the image.

Python ●●●
>>> from PIL import Image
>>> img = Image.open(“flower_girl.jpg”)
>>> img.filename
’flower_girl.jpg’

>>> img.format
’JPEG’
>>>

width, height and size
The width returns the width of the image in pixel.
The height method returns the height of the image in pixel.
The size() returns the width and height of the image as a tuple (width,
height).

Python ●●●
>>> from PIL import Image
>>> img = Image.open(“flower_girl.jpg”)
>>> img.width
736
>>> img.height
920
>>> img.size
(736, 920) # (width, height)
>>>

getpixel(xy) and histogram(maxcolors)
The getpixel() returns the pixel value at a specific (x, y) coordinate.
The returned value format depends on the image mode.

The histogram() method returns a histogram of the image, representing pixel

intensity distribution. This is useful for analyzing image contrast and color
composition.

Python ●●●

>>> from PIL import Image
>>> img = Image.open(“flower_girl.jpg”)
>>> img.getpixel(xy = (10, 20))
(190, 190, 182)
>>> img.histogram()
[………] # List of pixels
>>>

mode, getbands() and getcolors()
The mode returns the color mode of the image, defining the number and type
of color bands. Common modes include:

RGB – Red, Green, Blue

CMYK – Cyan, Magenta, Yellow, Black

L – Luminance (grayscale)

RGBA – RGB with an Alpha (transparency) channel

LAB, HSV, P, 1, I, F – Other modes for various image types

The getbands() returns a tuple listing the names of each color band in the
image. For an RGB image, it returns ('R', 'G', 'B').

The getcolors() returns a list of colors used in the image, limited to the
specified maxcolors (default: 256). Returns None if the color count exceeds
the limit.

Python ●●●

>>> from PIL import Image
>>> img = Image.open(“pictures\\cat.jpg”)
>>> img.mode
'RGB'
>>> img.getbands()
('R', 'G', 'B')
>>>

The ImageDraw Module

The ImageDraw module in the Python Imaging Library (PIL) provides
methods for drawing 2D graphics, including shapes, geometric figures, and
text, onto images. It is used alongside the Image module to create and
manipulate images.

Methods

Any Draw ModuleType annotations

AnyStr Image Outline cast

Callable ImageColor Sequence deprecate

Coords ImageDraw Union floodfill

getdraw math struct

Deep

Use dir(ImageDraw) to list all the methods and attributes
available in the ImageDraw module.

>>> from PIL import ImageDraw, Image
>>> dir(ImageDraw)
[………]

>>>
>>> img = Image.open(“picture.ico”)
>>> draw = ImageDraw.Draw(im = img)
>>> dir(draw)
[……...]
>>>

Draw(im, mode)
The Draw() class is crucial for adding graphics to images. It provides
numerous functions for drawing geometric shapes and applying text.
im →(Image)[required]: A required parameter that specifies the image to be
drawn on.
mode → (string)[optional]: Specifies the color mode, such as "RGB", "L", or
"CMYK".

Methods and Attributes of Draw

arc ellipse im multiline_textbbox rectangle

bitmap fill ink palette regular_polygon

chord font line pieslice rounded_rectangle

circle fontmode mode point shape

draw getfont multiline_text polygon text

textbbox textlength

Table 26.3: Some methods of Draw()

text(xy, text, fill, font, fill, spacing, align, direction, stroke_width,
stroke_fill, embedded_color)

The text() method is used to add text to an image.
xy →(tuple (x, y)): Specifies the coordinates where the text should appear.
text →(string): The actual text to be displayed.
font →(ImageFont) [optional]: Defines the font style. Example:
ImageFont.truetype("path/to/font.ttf", size).
fill → (int/str/tuple) [optional]: Defines the text color.
spacing →(float) [optional]: Sets the space between lines in multiline text.
align → (string) = ("left", "right", "center"): Controls text alignment.
direction → (string) = ("ltr", "rtl", "ttb"): Specifies text direction.
stroke_width →(float) [optional]: Sets the stroke thickness.
stroke_fill →(color) [optional]: Defines the stroke color.
embedded_color →(bool)[optional]: Determines whether to use font-
embedded color glyphs.

Python ●●●
from PIL import Image, ImageDraw, ImageFont

img = Image.new(mode="RGB", size=(600,800), color="#324D34")
draw = ImageDraw.Draw(im=img)

font = ImageFont.load_default(size=50)
mytext = "Awesome Python!\nGraphics"
draw.text(text=mytext, xy=(100, 350), font=font, align= "center")
img.show()

Deep
The ImageFont module in PIL is used for customizing fonts.
The ImageFont.load_default(size) method adjusts the default font size.
To use a custom font, ImageFont.truetype(font, size, index) is used,
where font specifies the font file, size defines the font size, and index
indicates the font face to load.

>>> from PIL import ImageFont
>>> font = ImageFont.truetype(font= “san_serif.ttf”, size = 20)
>>>
You can explore and download fonts from Google Fonts.

https://fonts.google.com/

Python ●●●
from PIL import Image, ImageDraw, ImageFont

smile = Image.open("smile.jpg")
draw = ImageDraw.Draw(im=smile)
font = ImageFont.truetype(font="font.ttf", size=50)
text = "smile with love"
draw.text(text=text, xy=(50, smile.height-200), font=font, align= "center",
fill="#D86350")

eagle = Image.open("eagle.jpeg")
draw = ImageDraw.Draw(im=eagle)
font = ImageFont.truetype(font="arvo.ttf", size=60)
text = "The power of courage!"
draw.text(text=text, xy=(20, 500), font=font, align= "center",
stroke_fill="#ff6700", stroke_width=50)

smile.show()

eagle.show()

Deep

Multiline Text
The multiline_text() method has the same parameters as text(), but it is
specifically designed to render text containing newline characters (\n).

Drawing Shapes

line(xy, fill, width, joint)
The line() method draws a line by connecting coordinate points.
xy →(list of (x, y) tuples): Points defining the line path.
width →(float) [optional]: Line thickness.
fill →(color)[optional]: Line color.

Python ●●●
from PIL import Image, ImageDraw

line = Image.new(mode="RGB", size=(800, 600), color="#3a6ea5")
draw = ImageDraw.Draw(im=line)
draw.line(xy= [(100,300), (400, 200), (450, 400), (750, 300)], width= 5,
fill="#ebebeb")
line.show()

rectangle(xy, fill, outline, width)
The rectangle() method is used to draw a rectangular shape on an image.
xy →(tuple or list of tuples (x, y, width, height)): Defines the rectangle
coordinates.
fill →(color)[optional]: Background color.
outline →(color) [optional]: Border color.
width →(float)[optional]: Border thickness.

Note

The rectangle() method can also be used to draw squares. This can be
achieved by ensuring that the coordinates define equal side lengths.

Python ●●●
from PIL import Image, ImageDraw

rectangle = Image.new(mode="RGB", size=(500,500), color="#3a6ea5")
draw_rec = ImageDraw.Draw(im=rectangle)
draw_rec.rectangle(xy= (100,100, 400, 300), width= 2, fill="#ebebeb")

square = Image.new(mode="RGB", size=(500,500), color="#3a6ea5")
draw_sq = ImageDraw.Draw(im=square)
draw_sq.rectangle(xy= (100,100, 400,400), width= 5, outline="#ebebeb")

rectangle.show()
square.show()

rectangle square

rounded_rectangle(xy, fill, outline, width)
The rounded_rectangle() method is used to draw a rectangle with rounded
corners.
radius →(float): Defines corner rounding.
xy →(tuple or list of tuples (x, y, width, height)): Defines the rectangle
coordinates.
fill →(color)[optional]: Background color.
outline →(color)[optional]: Border color.
width →(float)[optional]: Border thickness.

Python ●●●
from PIL import Image, ImageDraw
round_rec = Image.new(mode="RGB", size=(500,500), color="#324D34")
draw = ImageDraw.Draw(im=round_rec)
draw.rounded_rectangle(radius= 25, xy= (100,150, 400, 300), width= 2,
fill="#ebebeb")

round_rec_pic = Image.open("girl.jpeg")
draw2 = ImageDraw.Draw(im=round_rec_pic)
xy = (100,100, round_rec_pic.width-100, round_rec_pic.height-100)
draw2.rounded_rectangle(radius= 20, xy= xy, width= 5, outline="#c57284")
round_rec.show()
round_rec_pic.show()

circle(xy, radius, outline, width, fill)
The circle() method is used to draw a circle with a defined radius and center
point.
xy →(x, y) [required]: Defines the center coordinates of the circle.
radius →(float) [required]: Specifies the radius of the circle.
width → (float)[required]: Determines the thickness of the circle's outline.
outline → (int or "string" or "#hex" or (red, green, blue))[optional]: Specifies
the boundary color of the circle.
fill → (int or "string", "#hex" or (red, green, blue))[optional]: Defines the
background color of the circle. It is transparent by default.

Python ●●●
from PIL import Image, ImageDraw

circle = Image.new(mode="RGB", size=(500,500), color="#151419")
draw = ImageDraw.Draw(im=circle)
draw.circle(radius= 100, xy = (250,250,), width= 5, fill="#EB5E28")

circle_pic = Image.open("potrait.jpg")
draw2 = ImageDraw.Draw(im = circle_pic)
draw2.circle(radius= 200, xy = (370,300) , width= 10, outline="#EB5E28")

circle.show()
circle_pic.show()

ellipse(xy, width, outline, fill)
The ellipse() is used to draw circles by specifying a bounding box.
xy → (x, y, width, height) [required]: Defines the center coordinates of the
circle.
width → (float)[optional]: Determines the thickness of the circle's outline.
outline → (int, "string", "#hex" or (red, green, blue)) [optional]: Specifies the
boundary color of the circle.
fill → (int, "string", "#hex" or (red, green, blue)) [optional]: Defines the
background color of the ellipse. It is transparent by default.

Python ●●●
from PIL import Image, ImageDraw

img = Image.new(mode="RGB", size=(500,500), color="#3A6EA5")
draw = ImageDraw.Draw(im=img)
draw.ellipse(xy= (100, 100, 400, 400), width= 20, outline="#0D2137",
fill="#ebebeb")
draw.ellipse(xy= (150, 150, 350, 350), width= 10, fill="red")
img.show()

arc(xy, start, end, width, fill)
The arc() method draws an incomplete circle or a portion of a circle outline..
xy → (x, y, width, height) [required]: Defines the center coordinates of the
circle.
start , end → (float) [required]: Define the start and end angles of the arc.
width → (float) [optional]: Determines the thickness of the circle's outline.
fill → (int, "string", "#hex" or (red, green, blue)) [optional]: Defines the
background color of the arc. It is transparent by default.

Python ●●●
from PIL import Image, ImageDraw

arc = Image.new(mode="RGB", size=(500,500), color="#3A6EA5")
draw = ImageDraw.Draw(im=arc)
draw.arc(xy= (50, 50, 350, 350), start=10, end=150, width= 10,
fill="#EBEBEB")

arc.show()

chord(xy, start, end, width, fill, outline)
The chord() method draws an arc whose ends are connected by a line.
xy → (x, y) [required]: Defines the center coordinates of the circle.
start , end → (float) [required]: Define the start and end angles of the arc.
width → (float) [optional]: Determines the thickness of the arc's outline.
fill → (int, "string", "#hex" or (red, green, blue)) [optional]: Defines the
background color of the chord. It is transparent by default.

Python ●●●
from PIL import Image, ImageDraw

chord = Image.new(mode="RGB", size=(500,500), color="#3A6EA5")

draw = ImageDraw.Draw(im=chord)
xy = (50, 50, 400, 400)
draw.chord(xy= xy, start= 10, end=200, width= 15, fill="#ff6700",
outline="#0D2137")

chord.show()

polygon(xy, width, fill, outline)
The polygon() method is used to draw a polygon by connecting multiple
coordinate points.

xy → ([(x1, y1), (x2, y2), (x3, y3), ...]) [required]: – A list of coordinate
points that define the vertices of the polygon.
width → (float) [optional]: Determines the thickness of the polygon's outline.
fill → (int, "colorname", "#hex" or (red, green, blue)) [optional]: Defines the
background color of the polygon. It is transparent by default.

Python ●●●
from PIL import Image, ImageDraw

poly = Image.new(mode="RGB", size=(500,500), color="#3A6EA5")
draw = ImageDraw.Draw(im=poly)
xy = [(150, 450),(350, 450),(450, 250),(250, 50),(50, 250),]
draw.polygon(xy= xy, width= 10, outline="#ebebeb")

poly.show()

The ImageEnhance Module

The ImageEnhance module provides various classes for enhancing images
by adjusting their color, contrast, brightness, and sharpness. These
classes take an image as a parameter and modify its appearance using an
enhancement factor, typically ranging from 0.0 to 1.0, where 1.0 represents
the original image.

Methods

Brightness Contrast ImageFilter Sharpness

Color Image ImageStat annotations

Deep

To explore the available methods and attributes of the ImageEnhance

module, use the dir() function.
>>> from PIL import ImageEnhance
>>> dir(ImageEnhance)

The ImageEnhance module provides three key objects for each
enhancement class:

image
Represents the input image and provides methods for manipulation and data
retrieval.

degenerate
This generates the least enhanced version of the image, often used as a
reference for scaling enhancements.

enhance(factor)
Applies the enhancement effect to the image based on the specified factor,
where 1.0 represents the original image.

Brightness(image)
The Brightness() class controls the light intensity of an image:
.A factor of 0.0 results in a completely dark image ޡ
.A factor of 1.0 preserves the original brightness ޡ
.A factor above 1.0 increases the brightness ޡ

Python ●●●
from PIL import Image, ImageDraw
img = Image.open("girl.jpeg")
enhanced1 = ImageEnhance.Brightness(image=img).enhance(factor=0.3)
enhanced2 = ImageEnhance.Brightness(image=img).enhance(factor=2)
enhanced3 = ImageEnhance.Brightness(image=img).enhance(factor=5)

img.show()
enhanced1.show()
enhanced2.show()
enhanced3.show()

Original image brightness factor: 0.3

brightness factor: 2 brightness factor : 5

Contrast(image)
The Contrast() class adjusts the difference between the darkest and lightest
parts of an image:
.A factor of 0.0 results in a completely gray image ޡ
.A factor of 1.0 maintains the original contrast ޡ
.A factor above 1.0 increases contrast ޡ

Python ●●●
from PIL import Image, ImageDraw
img = Image.open("girl.jpeg")
img.show()
ImageEnhance.Contrast(image=img).enhance(factor=0.6).show()
ImageEnhance.Contrast(image=img).enhance(factor=2) .show()
ImageEnhance.Contrast(image=img).enhance(factor=4) .show()

original image contrast factor : 0.6

contrast factor : 2 contrast factor : 4

Color(image)
The Color() class manages the saturation or intensity of colors in an
image:
.A factor of 0.0 converts the image to black and white ޡ
.A factor of 1.0 keeps the original colors ޡ
.A factor above 1.0 increases color vibrancy ޡ

Python ●●●
from PIL import Image, ImageDraw
img = Image.open("parrot.jpeg")
enhanced1 = ImageEnhance.Color(image=img).enhance(factor=0.
enhanced2 = ImageEnhance.Color(image=img).enhance(factor=0.4)
enhanced3 = ImageEnhance.Color(image=img).enhance(factor=3)

img.show()
enhanced1.show()
enhanced2.show()
enhanced3.show()

Original image color factor : 0.0

color factor : 0.4 color factor : 3.0

Sharpness(image)
The Sharpness() class controls the clarity of edges and fine details in an
image:
.A factor of 0.0 results in a completely blurred image ޡ
.A factor of 1.0 maintains the original sharpness ޡ
.A factor above 1.0 enhances the sharpness ޡ

Python ●●●
from PIL import Image, ImageDraw

img = Image.open("snow_trip.jpeg")
img.show()
ImageEnhance.Sharpness(image=img).enhance(factor= -10.0).show()
ImageEnhance.Sharpness(image=img).enhance(factor= 0.0) .show()
ImageEnhance.Sharpness(image=img).enhance(factor=15.0) .show()

Original image sharpness factor : -10.0

sharpness factor : 0.0 sharpness factor : 15.0

The ImageFilter Module

Image filtering enhances an image's appearance by modifying pixel values
using predefined functions. The ImageFilter module in PIL provides various
classes for applying different filtering effects.

Predefined Filters in Pillow
Pillow includes several built-in filters:

Filter Name Effect

SMOOTH Applies a subtle smoothing effect

SMOOTH_MORE Enhances the smoothing effect

BLUR Softens the image

SHARPEN Enhances image sharpness

FIND_EDGES Highlights edges in the image

CONTOUR Creates a contour-like effect

DETAIL Enhances fine details

EDGE_ENHANCE Enhances image edges

EDGE_ENHANCE_MORE Stronger edge enhancement
EMBOSS Creates an embossed effect
Table 26.4: Predefined Filters

Deep

To explore the available methods and attributes of the ImageFilter module,
use the dir() function.
>>> from PIL import ImageFilter
>>> dir(ImageFilter)
[……..]
>>>

Python ●●●
from PIL import Image, ImageFilter
img = Image.open("orange_love.png")
img.show()
img.filter(ImageFilter.BLUR).show()
img.filter(ImageFilter.CONTOUR).show()
img.filter(ImageFilter.SMOOTH_MORE).show()
img.filter(ImageFilter.EMBOSS).show()
img.filter(ImageFilter.FIND_EDGES).show()
img.filter(ImageFilter.DETAIL).show()
img.filter(ImageFilter.SHARPEN).show()

Original image BLUR

CONTOUR

SMOOTH_MORE

EMBOSS FIND_EDGES

DETAIL SHARPEN

ImageFilter Classes

RankFilter(size, rank)
Sorts all pixels in a window of the specified size and returns the rankth value.
size → (int)[required]: The kernel size in pixels.
rank → (int)[required]: The pixel value to pick.

0 → Minimum filter
size*size/2 → Median filter
size*size - 1 → Maximum filter

Python ●●●

from PIL import Image, ImageFilter
img = Image.open("orange_love.png")
img.filter(ImageFilter.RankFilter(size = 7, rank= 2)).show()

MinFilter(size)
Selects the lowest pixel value in a given window size.
size → (int)[required]: Kernel size in pixels.

MaxFilter(size)
Selects the highest pixel value in a given window size.
size → (int)[required]: Kernel size in pixels.

MedianFilter(size)
Selects the median pixel value in a given window size.
size → (int)[required]: Kernel size in pixels.

ModeFilter(size)
Selects the most frequent pixel value in a given window size. Pixels that
appear only once or twice are ignored.
size → (int)[required]: Kernel size in pixels.

MultibandFilter
Used for filtering multi-band images.

BoxBlur(radius)
Blurs the image by averaging pixel values in a square box extending radius
pixels in each direction.
radius → (float or list of floats)[required]: Defines the blur area.

radius = 0 → No blur applied
Python ●●●

from PIL import Image, ImageFilter
img = Image.open("orange_love.png")
img.filter(ImageFilter.BoxBlur(radius = 10)).show()

GaussianBlur(radius)
Blurs the image using a Gaussian kernel approximation with extended box
filters.
radius → (float or list of floats)[required]: Defines the standard deviation of
the Gaussian kernel.

The ImageChops Module

The ImageChops module in Pillow provides a collection of channel
operations ("chops") for performing arithmetic image manipulations. These
operations are useful for image comparison, blending, masking, and logical
operations.

Methods

add composite duplicate logical_and

add_modulo constant hard_light logical_or

annotations darker invert logical_xor

blend difference lighter multiply

offset overlay screen soft_light

subtract subtract_modulo

Deep

Use the dir() function to explore the available methods and attributes of the
ImageChops module.
>>> from PIL import ImageChops
>>> dir(ImageChops)
[……..]
>>>

add(image1, image2, scale, offset)
This method adds one image to another with an optional scale and offset.

image1→ (PIL.Image) : First image.
image2 → (PIL.Image): Second image.
scale → (float)[optional- default=1.0]: The resulting image is divided by this
scale factor.
offset → (int)[optional- default=0]: A value added to the result to adjust
brightness.

Python ●●●
from PIL import Image, ImageChops

img1 = Image.open("freshview.jpeg")
img2 = Image.open("warmview.jpeg")
img1.show()
img2.show()
ImageChops.add(image1=img1, image2=img2, scale=3, offset=10).show()

add_modulo(image1, image2, scale, offset)
This method adds two images without applying a scale factor, meaning pixel
values wrap around (modulo 256).
image1→ (PIL.Image) : First image.
image2→ (PIL.Image) : Second image.
ฌ Use Case: Prevents image values from clipping when they exceed the
maximum pixel value.

subtract(image1, image2, scale, offset)
Subtracts image2 from image1 and divides by a scale factor, with an optional
offset.
image1 → (PIL.Image): First image.
image2 → (PIL.Image): Second image.
scale → (float)[optional- default=1.0]: Controls the degree of subtraction.
offset → (int)[optional- default=0]: Adjusts the resulting image brightness.
ฌ Use Case: Used to detect changes between images.

Python ●●●
from PIL import Image, ImageChops

img1 = Image.open("freshview.jpeg")
img2 = Image.open("warmview.jpeg")
img = ImageChops.subtract(image1=img1, image2=img2, scale=3,
offset=10)
img.save("new_image.jpg")

subtract_modulo(image1, image2)
Subtracts image2 from image1 without clipping pixel values (wraps around if

values go negative).
image1→ (PIL.Image): First image.
image2→ (PIL.Image): Second image.
ฌ Use Case: Works well for periodic images where wrapping pixel values
is desired.

difference(image1, image2)
Computes the absolute difference between two images, pixel by pixel.
ฌ Use Case: Commonly used in image comparison and detecting changes
between two images.

Python ●●●
from PIL import Image, ImageChops
img1 = Image.open("girl_with_orange.jpeg")
img2 = Image.open("girl_with_glass.jpeg")
img1.show()
img2.show()
ImageChops.difference(image1=img1, image2=img2).show()

lighter(image1, image2)
Creates an image where each pixel is the lighter value of the two images.
ฌ Use Case: Useful for highlighting bright areas.

Python ●●●
from PIL import Image, ImageChops
img1 = Image.open("girl_with_orange.jpeg")
img2 = Image.open("girl_with_glass.jpeg")
ImageChops.lighter(image1=img1, image2=img2).show()

hard_light(image1, image2)
This method applies the Hard Light blending mode, which enhances contrast
by either multiplying or screening the pixel values of two images based on
the brightness of the top image.

ฌ Use Case: Used for adding dramatic lighting effects by
intensifying highlights and shadows

Python ●●●

img1 = Image.open("girl_with_orange.jpeg")
img2 = Image.open("girl_with_glass.jpeg")
ImageChops.hard_lighter(image1=img1, image2=img2).show()

invert(image)

This method inverts an image, meaning dark areas become
bright and vice versa.
ฌ Use Case: Used for negative effects.

Python

Python ●●●
img = Image.open("dark_girl.jpeg")
img.show()
ImageChops.invert(image = img).show()

multiply(image1, image2)
Multiplies pixel values of two images, making dark areas darker and bright

areas brighter.
image1→ (PIL.Image): First image.
image2→ (PIL.Image): Second image.
ฌ Use Case: Often used for shadow effects.

screen(image1, image2)
This method blends two inverted images and superimposes them.
image1→ (PIL.Image) – First image.
image2→ (PIL.Image) – Second image.
ฌ Use Case: Used in graphics editing for soft light effects.

overlay(image1, image2)
Applies the Overlay blending mode, enhancing contrast by mixing
highlights and shadows.
image1→ (PIL.Image): First image.
image2→ (PIL.Image): Second image.
ฌ Use Case: Used in photo filters and color correction.

blend(image1, image2, alpha)
Blends two images with a constant transparency weight (alpha).
image1→ (PIL.Image): First image.
image2→ (PIL.Image): Second image.
alpha→ (float)[required]: A value between 0.0 (fully transparent) and 1.0
(fully visible).
ฌ Use Case: Used in fading effects.

constant(image1, image2, value)
This method fills a channel with a given gray level.
image1→ (PIL.Image): First image.
image2→ (PIL.Image): Second image.
value → (int)[required]: Level of gray (0-255).
ฌ Use Case: Used for background manipulation.

The ImageGrab Module

The ImageGrab module in Pillow is primarily used for capturing
screenshots of the entire computer screen or retrieving content from the
clipboard. It provides two key functions: one for taking screenshots and
another for extracting clipboard content.

Taking Screenshots

grab(bbox, include_layered_window, all_screens, xdisplay)
The grab() function captures a screenshot of the screen. If no bounding box
(bbox) is specified, it captures the entire screen.

bbox → (tuple)[optional]: Defines the region of the screen to capture in the
format (x, y, width, height).

x, y → Coordinates of the top-left corner.
width, height → Dimensions of the region to capture.

include_layered_windows → (bool)[optional]: If True, captures layered
windows (Windows-only).
all_screens → (bool)[optional]: If True, captures all screens in a multi-
monitor setup (Windows-only).
xdisplay → (string): Specifies the display to capture (Linux-only).

Python ●●●
from PIL import Image, ImageGrab

img = ImageGrab.grab()

img.show()
img.save("screenshot.png")

Capturing Clipboard Content

grabclipboard()
The grabclipboard() function retrieves the current clipboard content if
available.

Return Values:

.If an image is stored in the clipboard, it returns a PIL.Image object ޡ
.If file paths are stored, it returns a list of filenames ޡ
.Returns None if the clipboard is empty or contains unsupported data ޡ

Python ●●●
from PIL import Image, ImageGrab

content = ImageGrab.grabclipboard()
print(content)

Think about it ?

1. Is there any other class in the ImageGrab module besides grab() and
grabclipboard()?

2. How does the computer's print screen function differ from
ImageGrab.grab()?

Remarks

Thank you so much for taking the time to read this book. I sincerely
appreciate your support, and I pray that the Almighty God replenishes every
penny you have spent on this book. May you be blessed abundantly.

Ouereila Publishing House is continuously growing, and we acknowledge
that we are not yet perfect. Your feedback is invaluable in helping us improve
and refine our work. If you have any suggestions, comments, or insights,
please feel free to share them with us at ouereila@gmail.com or through this
feedback form. Your input will contribute to the betterment of not only this
book but also future publications.

Acknowledgment

First and foremost, I extend my deepest gratitude to the Almighty God for
guiding me through this journey and giving me the strength to complete this
work.

A special thanks goes to my dear mother, Irene, for her unwavering love,
encouragement, and belief in me. Her support has been a cornerstone of my
journey, and I pray she continues to live a long and fulfilling life.

Additionally, I extend my gratitude to everyone who has supported me in any
way—whether through words of encouragement, constructive feedback, or

mailto:ouereila@gmail.com?subject=Feedback
https://docs.google.com/forms/d/e/1FAIpQLScB01PTVVEtQffD9hxCiAQS5VneDdKF64cwh5-781T7-HGIAg/viewform?usp=sf_link

simply believing in this vision. Your contributions, big or small, have played
a role in bringing this book to life.

May this book serve as a stepping stone for those eager to explore the world
of Python.

With appreciation,
Williams Asiedu

About the Author

Williams Asiedu is a software engineer, entrepreneur, and philanthropist. He
earned his Master’s degree from the Illinois Institute of Technology and
currently works as a software engineer.

Beyond his work in software development, Williams is also a publisher and
author, with multiple books to his name. He has written extensively on
computer science and programming and has also collaborated with other
authors to contribute to the field.

As a philanthropist, Williams is deeply committed to giving back to society.
His generosity and dedication to community development have positively
impacted many lives. Through his work, he continues to inspire and support
aspiring technologists and innovators.

	Programming Languages
	Kinds of Programming Languages
	Installing Python
	Editors
	Running Python
	(Untitled)
	Executing Python from the Command Line
	Modules or Libraries

